A213215 For the Collatz (3x+1) iterations starting with the odd numbers k, a(n) is the smallest k such that the trajectory contains at least n successive odd numbers == 3 (mod 4).
1, 3, 7, 15, 27, 27, 127, 255, 511, 1023, 1819, 4095, 4255, 16383, 32767, 65535, 77671, 262143, 459759, 1048575, 2097151, 4194303, 7456539, 16777215, 33554431, 67108863, 125687199, 125687199, 125687199, 1073741823, 2147483647, 4294967295, 8589934591, 17179869183
Offset: 1
Keywords
Examples
a(4)=15 because the Collatz sequence for 15 (15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1) is the first Collatz sequence to contain 4 consecutive odd numbers congruent to 3 (mod 4): 15, 23, 35, and 53.
Links
- Kevin P. Thompson, Table of n, a(n) for n = 1..36
Programs
-
Maple
nn:=200:T:=array(1..nn): for n from 1 to 20 do:jj:=0: for m from 3 by 2 to 10^8 while(jj=0) do: for i from 1 to nn while(jj=0) do: T[i]:=0:od:a:=1:T[1]:=m:x:=m: for it from 1 to 100 while (x>1) do: if irem(x,2)=0 then x := x/2:a:=a+1:T[a]:=x: else x := 3*x+1: a := a+1: T[a]:=x: fi: od: jj:=0:aa:=a: for j from 1 to aa while(jj=0) do: if irem(T[j],4)=3 then T[j]:=1: else T[j]:=0: fi: od: for p from 0 to aa-1 while (jj=0) do: s:=sum(T[p+k],k=1..2*n): if s=n then jj:=1: printf ( "%d %d \n",n,m): else fi: od: od: od:
-
Mathematica
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; countThrees[t_] := Module[{mx = 0, cnt = 0, i = 0}, While[i < Length[t], i++; If[t[[i]] == 3, cnt++; i++, If[cnt > mx, mx = cnt]; cnt = 0]]; mx]; nn = 15; t = Table[0, {nn}]; n = 1; While[Min[t] == 0, n = n + 2; c = countThrees[Mod[Collatz[n], 4]]; If[c <= nn && t[[c]] == 0, t[[c]] = n; Do[If[t[[i]] == 0, t[[i]] = n], {i, c}]]]; t (* T. D. Noe, Mar 02 2013 *)
Extensions
Definition clarified, a(1) inserted, and a(21)-a(34) added by Kevin P. Thompson, Dec 15 2021
Comments