cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213260 p(5n+4) where p(k) = number of partitions of k = A000041(k).

Original entry on oeis.org

5, 30, 135, 490, 1575, 4565, 12310, 31185, 75175, 173525, 386155, 831820, 1741630, 3554345, 7089500, 13848650, 26543660, 49995925, 92669720, 169229875, 304801365, 541946240, 952050665, 1653668665, 2841940500, 4835271870, 8149040695, 13610949895, 22540654445, 37027355200, 60356673280, 97662728555, 156919475295
Offset: 0

Views

Author

N. J. A. Sloane, Jun 07 2012

Keywords

Comments

It is known that a(n) is divisible by 5 (see A071734).

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP[5n+4],{n,0,40}] (* Harvey P. Dale, May 30 2013 *)
  • PARI
    a(n) = numbpart(5*n+4); \\ Michel Marcus, Jan 07 2015
    
  • Python
    from sympy.functions import partition
    def a(n): return partition(5*n+4)
    print([a(n) for n in range(33)]) # Michael S. Branicky, May 30 2021

Formula

a(n) = A000041(A016897(n)). - Omar E. Pol, Jan 18 2013