A213260 p(5n+4) where p(k) = number of partitions of k = A000041(k).
5, 30, 135, 490, 1575, 4565, 12310, 31185, 75175, 173525, 386155, 831820, 1741630, 3554345, 7089500, 13848650, 26543660, 49995925, 92669720, 169229875, 304801365, 541946240, 952050665, 1653668665, 2841940500, 4835271870, 8149040695, 13610949895, 22540654445, 37027355200, 60356673280, 97662728555, 156919475295
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- James Grime and Brady Haran, Partitions, Numberphile video (2016).
- Lasse Winquist, An elementary proof of p(11m+6) == 0 (mod 11), J. Combinatorial Theory 6 1969 56--59. MR0236136 (38 #4434). - From _N. J. A. Sloane_, Jun 07 2012
Programs
-
Mathematica
Table[PartitionsP[5n+4],{n,0,40}] (* Harvey P. Dale, May 30 2013 *)
-
PARI
a(n) = numbpart(5*n+4); \\ Michel Marcus, Jan 07 2015
-
Python
from sympy.functions import partition def a(n): return partition(5*n+4) print([a(n) for n in range(33)]) # Michael S. Branicky, May 30 2021
Comments