A213268 Denominators of the Inverse semi-binomial transform of A001477(n) read downwards antidiagonals.
1, 1, 1, 1, 2, 1, 1, 1, 4, 4, 1, 2, 2, 8, 2, 1, 1, 4, 1, 16, 16, 1, 2, 1, 8, 8, 32, 16, 1, 1, 4, 4, 16, 8, 64, 64, 1, 2, 2, 8, 4, 32, 32, 128, 16, 1, 1, 4, 2, 16, 16, 64, 8, 256, 256, 1, 2, 1, 8, 8, 32, 4, 128, 128, 512, 256, 1, 1, 4, 4, 16, 2, 64, 64, 256, 128, 1024, 1024
Offset: 0
Examples
The array of denominators starts: 1 1 1 1 1 1 1 1 1 1 1 ... 1 2 1 2 1 2 1 2 1 2 1 ... 1 4 2 4 1 4 2 4 1 4 2 ... 4 8 1 8 4 8 2 8 4 8 1 ... 2 16 8 16 4 16 8 16 1 16 8 ... 16 32 8 32 16 32 2 32 16 32 8 ... 16 64 32 64 4 64 32 64 16 64 32 ... 64 128 8 128 64 128 32 128 64 128 16 ... 16 256 128 256 64 256 128 256 32 256 128 ... 256 512 128 512 256 512 64 512 256 512 128 ... All entries are powers of 2.
Programs
-
Maple
A213268frac := proc(n,k) if n = 0 then return k ; else return procname(n-1,k+1)-procname(n-1,k)/2 ; end if; end proc: A213268 := proc(n,k) denom(A213268frac(n,k)) ; end proc: # R. J. Mathar, Jun 30 2012
-
Mathematica
T[0, k_] := k; T[n_, k_] := T[n, k] = T[n-1, k+1] - T[n-1, k]/2; Table[T[n-k, k] // Denominator, {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 12 2014 *)
Comments