cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A211280 Numerator of prime(n+1) - prime(n)/2.

Original entry on oeis.org

2, 7, 9, 15, 15, 21, 21, 27, 35, 33, 43, 45, 45, 51, 59, 65, 63, 73, 75, 75, 85, 87, 95, 105, 105, 105, 111, 111, 117, 141, 135, 143, 141, 159, 153, 163, 169, 171, 179, 185, 183, 201, 195, 201, 201, 223, 235, 231, 231, 237, 245, 243, 261, 263, 269, 275, 273, 283, 285, 285, 303, 321, 315, 315, 321, 345, 343, 357, 351, 357, 365, 375, 379
Offset: 1

Views

Author

Paul Curtz, Jul 05 2012

Keywords

Comments

Second row of the inverse semi-binomial transform of A000040(n+1) as introduced in A213268.
The list of denominators is 1, 2, 2, ... (2 repeated), so a(n) = A210497(n) for n>1.
a(n) - prime(n) = 2*prime(n+1)-prime(n)-prime(n) are prime differences (A001223) multiplied by 2, and therefore multiples of 4.

Crossrefs

Denominators are A040000.

Programs

  • Maple
    A211280 := proc(n)
            ithprime(n+1)-ithprime(n)/2 ;
            numer(%) ;
    end proc: # R. J. Mathar, Jul 10 2012
  • Mathematica
    Numerator[#[[2]]-#[[1]]/2]&/@Partition[Prime[Range[80]],2,1] (* Harvey P. Dale, Mar 05 2023 *)

Formula

a(n) ~ n log n. Apart from the first term, a(n) = 2*prime(n+1) - prime(n). - Charles R Greathouse IV, Jul 10 2012
a(n) = prime(n+2) - A036263(n), n>1. - R. J. Mathar, Jul 10 2012

A247004 Denominator of (n+4)/gcd(n, 4)^2, a 16-periodic sequence that associates A061037 with A106617.

Original entry on oeis.org

4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2
Offset: 0

Views

Author

Keywords

Comments

This sequence may also be defined as the denominators of A061037(n+3)/(n+1), or also as A060819 / A109008.
One can notice that the analog numerators [numerators of (n+4)/gcd(n, 4)^2] are A106617 left-shifted 4 places.

Examples

			Fractions begin:
1/4,  5,  3/2,  7, 1/2,  9,  5/2, 11, 3/4, 13,  7/2, 15, 1, 17,  9/2, 19,
5/4, 21, 11/2, 23, 3/2, 25, 13/2, 27, 7/4, 29, 15/2, 31, 2, 33, 17/2, 35,
...
Numerators begin:
1,  5,  3,  7, 1,  9,  5, 11, 3, 13,  7, 15, 1, 17,  9, 19,
5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 2, 33, 17, 35,
...
Periodic part = [4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1];
		

Crossrefs

Programs

  • Magma
    [Denominator((n+4)/Gcd(n,4)^2): n in [0..100]]; // G. C. Greubel, Aug 05 2018
  • Mathematica
    a[n_] := (n+4)/GCD[n, 4]^2 // Denominator;  Table[a[n], {n, 0, 100}]
    (* or: *)
    Table[{1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4}[[Mod[n, 16, 1]]], {n, 0, 100}]
  • PARI
    for(n=0,100, print1(denominator((n+4)/gcd(n,4)^2), ", ")) \\ G. C. Greubel, Aug 05 2018
    

Formula

(n+4) / gcd(n, 4)^2 = A188134(n+4) / 4. - Michael Somos, Sep 12 2014
a(n) = a(n+16) = a(-n), a(2*n + 1) = 1 for all n in Z. - Michael Somos, Sep 13 2014

A219976 Denominators of the Inverse bi-binomial transform of A164558(n)/A027642(n) read downwards antidiagonals.

Original entry on oeis.org

1, 2, 2, 6, 6, 6, 1, 3, 3, 1, 30, 30, 30, 30, 30, 1, 15, 15, 15, 15, 1, 42, 42, 210, 210, 210, 42, 42, 1, 21, 21, 105, 105, 21, 21, 1, 30, 30, 210, 210, 210, 210, 210, 30, 30, 1, 15, 15, 105, 105, 105, 105, 15, 15, 1
Offset: 0

Views

Author

Paul Curtz, Dec 02 2012

Keywords

Comments

Starting from any sequence a(k) in the first row, we define the array T(n,k) of the inverse bi-binomial transform by T(0,k) = a(k), T(n,k) = T(n-1,k+1) -2*T(n-1,k) n>0. Hence A164558(n)/A027642(n) and successive "bi-differences":
1, 3/2, 13/6, 3, 119/30, 5, 253/42, 7, 239/30, 9;
-1/2, -5/6, -4/3, -61/30, -44/15, -167/42, -106/21, -181/30, -104/15;
1/6, 1/3, 19/30, 17/15, 397/210, 61/21 , 853/210, 77/15;
0, -1/30, -2/15, -79/210, -92/105, -367/210, -314/105;
-1/30, -1/15, -23/210, -13/105, 1/210, 53/105;
0, 1/42, 2/21, 53/210, 52/105;
1/42, 1/21, 13/210, -1/105;
0, -1/30, -2/15;
-1/30, -1/15;
0.
The first column is A027641(n)/A027642(n).

Examples

			Partial array of denominators:
1,   2,   6,   1,  30,   1,  42,  1, 30,  1;
2,   6,   3,  30,  15,  42,  21, 30, 15;
6,   3,  30,  15, 210,  21, 210, 15;
1,  30,  15, 210, 105, 210, 105;
30, 15, 210, 105, 210, 105;
1,  42,  21, 210, 105;
42, 21, 210, 105;
1,  30,  15;
30, 15;
1.
a(n):
1;
2,   2;
6,   6,  6,;
1,   3,  3,  1;
30, 30, 30, 30, 30;
		

Crossrefs

Cf. A213268.

Programs

  • Mathematica
    A164558[n_] := Sum[(-1)^k*Binomial[n, k]*BernoulliB[k], {k, 0, n}] // Numerator; t[0, k_?Positive] := A164558[k] / Denominator[ BernoulliB[k]]; t[n_?Positive, k_] := t[n, k] = t[n-1, k+1] - 2*t[n-1, k]; t[0, 0] = 1; t[, ] = 0; Flatten[ Table[t[n-k , k] // Denominator, {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Dec 04 2012 *)
Showing 1-3 of 3 results.