A213282 G.f. satisfies A(x) = G(x/(1-x)^3) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
1, 1, 6, 36, 236, 1656, 12192, 92960, 727824, 5817696, 47281472, 389533056, 3245867136, 27308274688, 231654031104, 1979205694464, 17016094611712, 147104972637696, 1277988764697600, 11151534242977792, 97692088569096192, 858890594909048832, 7575804347863105536
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 6*x^2 + 36*x^3 + 236*x^4 + 1656*x^5 + 12192*x^6 +... G.f.: A(x) = G(x/(1-x)^3) where G(x) = 1 + x*G(x)^3 is g.f. of A001764: G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Maple
series(RootOf(G = 1 + G^3*x/(1-x)^3, G),x=0,30); # Mark van Hoeij, Apr 18 2013
-
PARI
/* G.f. A(x) = G(x/(1-x)^3) where G(x) = 1 + x*G(x)^3: */ {a(n)=local(A,G=1+x);for(i=1,n,G=1+x*G^3+x*O(x^n));A=subst(G,x,x/(1-x+x*O(x^n))^3);polcoeff(A,n)} for(n=0,25,print1(a(n),", "))
-
PARI
/* G.f. A(x) = F(x*A(x)^3) where F(x) = 1 + x/F(-x)^3: */ {a(n)=local(F=1+x+x*O(x^n), A=1); for(i=1, n+1, F=1+x/subst(F^3, x, -x+x*O(x^n))); A=(serreverse(x/F^3)/x)^(1/3); polcoeff(A, n)} for(n=0, 25, print1(a(n), ", "))
Formula
G.f. satisfies: A(x) = F(x*A(x)^3) where F(x) = 1 + x/F(-x)^3 is the g.f. of A213281.
G.f. A(x) satisfies: A(1 - G(-x)) = G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
a(n) = Sum_{k=0..n} binomial(n+2*k-1,n-k) * binomial(3*k,k)/(2*k+1). - Seiichi Manyama, Oct 03 2023
Comments