A346626
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^3) / (1 - x).
Original entry on oeis.org
1, 2, 8, 44, 280, 1936, 14128, 107088, 834912, 6652608, 53934080, 443467136, 3689334272, 30997608960, 262651640064, 2241857334528, 19257951946240, 166362924583936, 1444351689281536, 12595885932259328, 110287974501355520, 969178569410404352, 8544982917273509888, 75565732555028701184
Offset: 0
-
nmax = 23; A[] = 0; Do[A[x] = (1 + x A[x]^3)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 23; CoefficientList[Series[Sum[(Binomial[3 k, k]/(2 k + 1)) x^k/(1 - x)^(3 k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 23}]
A213336
G.f. satisfies A(x) = G(x/(1-x)^4) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 8, 64, 568, 5440, 54888, 574848, 6190872, 68132224, 762874568, 8663106496, 99536424952, 1155012037824, 13516570396968, 159340702404352, 1890451582396632, 22555522916988672, 270466907608087944, 3257754635421506368, 39397587357527547320
Offset: 0
G.f.: A(x) = 1 + x + 8*x^2 + 64*x^3 + 568*x^4 + 5440*x^5 + 54888*x^6 +...
G.f.: A(x) = G(x/(1-x)^4) where G(x) = 1 + x*G(x)^4 is g.f. of A002293:
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
-
/* G.f. A(x) = G(x/(1-x)^4) where G(x) = 1 + x*G(x)^4: */
{a(n)=local(A, G=1+x); for(i=1, n, G=1+x*G^4+x*O(x^n)); A=subst(G, x, x/(1-x+x*O(x^n))^4); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* G.f. A(x) = F(x*A(x)^4) where F(x) = 1 + x/F(-x)^4: */
{a(n)=local(F=1+x+x*O(x^n),A=1); for(i=1, n+1, F=1+x/subst(F^4, x, -x+x*O(x^n))); A=(serreverse(x/F^4)/x)^(1/4);polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A213281
G.f. satisfies: A(x) = 1 + x/A(-x)^3.
Original entry on oeis.org
1, 1, 3, -3, -35, 48, 693, -1046, -16635, 26328, 442396, -720327, -12541509, 20810208, 371430414, -624691212, -11356013899, 19293440712, 355703260500, -609103135196, -11355804637164, 19568456886336, 368147199241021, -637674031240302, -12087185276792061
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 - 3*x^3 - 35*x^4 + 48*x^5 + 693*x^6 - 1046*x^7 +...
where
1/A(-x) = 1 + x - 2*x^2 - 8*x^3 + 30*x^4 + 143*x^5 - 638*x^6 - 3272*x^7 +...
x/A(-x)^3 = x + 3*x^2 - 3*x^3 - 35*x^4 + 48*x^5 + 693*x^6 - 1046*x^7 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 10*x^3 - 87*x^4 - 102*x^5 + 1632*x^6 + 1974*x^7 +...
The g.f. G(x) of A213282 begins:
G(x) = 1 + x + 6*x^2 + 36*x^3 + 236*x^4 + 1656*x^5 + 12192*x^6 + 92960*x^7 +...
where G(x) = A(x*G(x)^3) and G(x/A(x)^3) = A(x);
also, G(x) = F(x/(1-x)^3) where F(x) = 1 + x*F(x)^3 is g.f. of A001764:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+x/subst(A^3,x,-x+x*O(x^n)));polcoeff(A,n)}
for(n=0,40,print1(a(n),", "))
A366431
G.f. A(x) satisfies A(x) = 1 + x * (A(x) / (1 - x))^(5/2).
Original entry on oeis.org
1, 1, 5, 25, 135, 775, 4651, 28845, 183450, 1190050, 7844230, 52389678, 353770190, 2411324700, 16568343325, 114639216915, 798076174113, 5586035989185, 39287407321075, 277508001643575, 1967816928168265, 14003018984540741, 99965175670335750
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+3*k/2-1, n-k)*binomial(5*k/2, k)/(3*k/2+1));
A366499
G.f. A(x) satisfies A(x) = 1 + x / ((1+x)^3*A(x)^2).
Original entry on oeis.org
1, 1, -5, 25, -145, 945, -6641, 49057, -375361, 2948353, -23634049, 192554753, -1589812225, 13272519937, -111850866433, 950220134913, -8129133081601, 69971682467841, -605546841831425, 5265763716550657, -45988028107350017, 403192288488677377
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(n+2*k-1, n-k)*binomial(3*k-1, k)/(3*k-1));
A366176
G.f. A(x) satisfies A(x) = 1 + x*A(x)^3/(1 - x)^2.
Original entry on oeis.org
1, 1, 5, 27, 161, 1030, 6921, 48190, 344669, 2517303, 18695908, 140771477, 1072130229, 8244820518, 63931532190, 499308229278, 3924204043333, 31012883225891, 246304580923299, 1964794017165157, 15735626383151876, 126476316316459089, 1019883740031357941
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+k-1, n-k)*binomial(3*k, k)/(2*k+1));
A361932
G.f. A(x) satisfies A(x) = 1 + (x * A(x) / (1 - x))^3.
Original entry on oeis.org
1, 0, 0, 1, 3, 6, 13, 33, 84, 208, 522, 1341, 3476, 9042, 23673, 62426, 165504, 440664, 1178168, 3162357, 8517681, 23013294, 62356329, 169408107, 461366499, 1259311824, 3444497550, 9439766700, 25916832981, 71274793968, 196325540206, 541579442133
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n-1, n-3*k)*binomial(3*k, k)/(2*k+1));
A364403
G.f. A(x) satisfies A(x) = 1 + x^4 * (A(x) / (1 - x))^3.
Original entry on oeis.org
1, 0, 0, 0, 1, 3, 6, 10, 18, 39, 91, 204, 435, 919, 1992, 4434, 9947, 22215, 49455, 110480, 248505, 561930, 1273610, 2889666, 6566736, 14959083, 34163511, 78182700, 179201199, 411325125, 945512784, 2176710450, 5018195400, 11583688995, 26770164919
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(n-k-1, n-4*k)*binomial(3*k, k)/(2*k+1));
A379254
G.f. A(x) satisfies A(x) = ( (1 + x*A(x))/(1 - x*A(x)^2) )^3.
Original entry on oeis.org
1, 6, 72, 1136, 20496, 400176, 8230592, 175643712, 3852905472, 86338960640, 1967950718976, 45483461999616, 1063433350498304, 25107661327202304, 597766180153565184, 14335020154675867648, 345948883288769740800, 8395511682729703931904
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+4*k+2, k)*binomial(3*n+3*k+3, n-k)/(n+k+1));
A379255
G.f. A(x) satisfies A(x) = ( (1 + x*A(x))/(1 - x*A(x)^3) )^3.
Original entry on oeis.org
1, 6, 90, 1910, 47250, 1274406, 36344906, 1077809718, 32899427106, 1026823733702, 32619190553274, 1051205539768566, 34282637873690290, 1129326395659189734, 37522172645425790634, 1255954522404101871286, 42312438228338307500610, 1433621819994034883749254
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+7*k+2, k)*binomial(3*n+6*k+3, n-k)/(n+2*k+1));
Showing 1-10 of 12 results.
Comments