A213282
G.f. satisfies A(x) = G(x/(1-x)^3) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 6, 36, 236, 1656, 12192, 92960, 727824, 5817696, 47281472, 389533056, 3245867136, 27308274688, 231654031104, 1979205694464, 17016094611712, 147104972637696, 1277988764697600, 11151534242977792, 97692088569096192, 858890594909048832, 7575804347863105536
Offset: 0
G.f.: A(x) = 1 + x + 6*x^2 + 36*x^3 + 236*x^4 + 1656*x^5 + 12192*x^6 +...
G.f.: A(x) = G(x/(1-x)^3) where G(x) = 1 + x*G(x)^3 is g.f. of A001764:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
-
series(RootOf(G = 1 + G^3*x/(1-x)^3, G),x=0,30); # Mark van Hoeij, Apr 18 2013
-
/* G.f. A(x) = G(x/(1-x)^3) where G(x) = 1 + x*G(x)^3: */
{a(n)=local(A,G=1+x);for(i=1,n,G=1+x*G^3+x*O(x^n));A=subst(G,x,x/(1-x+x*O(x^n))^3);polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
-
/* G.f. A(x) = F(x*A(x)^3) where F(x) = 1 + x/F(-x)^3: */
{a(n)=local(F=1+x+x*O(x^n), A=1); for(i=1, n+1, F=1+x/subst(F^3, x, -x+x*O(x^n))); A=(serreverse(x/F^3)/x)^(1/3); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A213335
G.f. satisfies: A(x) = 1 + x/A(-x)^4.
Original entry on oeis.org
1, 1, 4, -6, -84, 171, 2940, -6576, -124260, 291321, 5810120, -14012244, -289392508, 711239741, 15052561056, -37498302048, -808073773572, 2033589755205, 44436219882252, -112715767473482, -2490257138332712, 6356863001632326, 141706826771491368
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 - 6*x^3 - 84*x^4 + 171*x^5 + 2940*x^6 - 6576*x^7 +...
where
1/A(-x) = 1 + x - 3*x^2 - 13*x^3 + 77*x^4 + 402*x^5 - 2849*x^6 - 16040*x^7 +...
1/A(-x)^4 = 1 + 4*x - 6*x^2 - 84*x^3 + 171*x^4 + 2940*x^5 - 6576*x^6 +...
A(x)^4 = 1 + 4*x + 22*x^2 + 28*x^3 - 263*x^4 - 476*x^5 + 8740*x^6 +...
The g.f. G(x) of A213336 begins:
G(x) = 1 + x + 8*x^2 + 64*x^3 + 568*x^4 + 5440*x^5 + 54888*x^6 +...
where G(x) = A(x*G(x)^4) and G(x/A(x)^4) = A(x);
also, G(x) = F(x/(1-x)^4) where F(x) = 1 + x*F(x)^4 is g.f. of A002293:
F(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=1+x/subst(A^4, x, -x+x*O(x^n))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
A366431
G.f. A(x) satisfies A(x) = 1 + x * (A(x) / (1 - x))^(5/2).
Original entry on oeis.org
1, 1, 5, 25, 135, 775, 4651, 28845, 183450, 1190050, 7844230, 52389678, 353770190, 2411324700, 16568343325, 114639216915, 798076174113, 5586035989185, 39287407321075, 277508001643575, 1967816928168265, 14003018984540741, 99965175670335750
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+3*k/2-1, n-k)*binomial(5*k/2, k)/(3*k/2+1));
A366501
G.f. A(x) satisfies A(x) = 1 + x / ((1+x)^4*A(x)^3).
Original entry on oeis.org
1, 1, -7, 49, -399, 3633, -35511, 363937, -3858079, 41951521, -465296487, 5243459409, -59865074223, 690979478481, -8049598938135, 94522387901505, -1117615459764031, 13294669980012865, -158995530738069703, 1910555096402418545, -23056131790988675279
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(n+3*k-1, n-k)*binomial(4*k-1, k)/(4*k-1));
A214337
Triangle read by rows: T(n,k) = number of rooted maps with n vertices and k faces on a non-orientable surface of type 3/2 (0 <= k <= n).
Original entry on oeis.org
0, 0, 41, 0, 690, 16925, 0, 7150, 237652, 4306778, 0, 58760, 2518957, 56864524, 910734615, 0, 420182, 22417804, 613687758, 11675167470, 174833737848
Offset: 0
Triangle begins:
0;
0, 41;
0, 690, 16925;
0, 7150, 237652, 4306778;
0, 58760, 2518957, 56864524, 910734615;
0, 420182, 22417804, 613687758, 11675167470, 174833737848;
...
A364410
G.f. A(x) satisfies A(x) = 1 + x^2 * (A(x) / (1 - x))^4.
Original entry on oeis.org
1, 0, 1, 4, 14, 52, 201, 800, 3260, 13536, 57068, 243664, 1051512, 4579088, 20097526, 88810872, 394811696, 1764477304, 7923087616, 35728412152, 161731039076, 734646128920, 3347600839252, 15298276784648, 70097391229500, 321974115549256, 1482242974320685
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(n+2*k-1, n-2*k)*binomial(4*k, k)/(3*k+1));
A366645
G.f. A(x) satisfies A(x) = 1 + x^3 * (A(x) / (1 - x))^4.
Original entry on oeis.org
1, 0, 0, 1, 4, 10, 24, 67, 200, 586, 1704, 5049, 15232, 46284, 141240, 433696, 1340500, 4164830, 12993792, 40697472, 127941300, 403561902, 1276763096, 4050430502, 12882398456, 41068966204, 131211997496, 420056152498, 1347272602056, 4328764460928, 13931034024536
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n+k-1, n-3*k)*binomial(4*k, k)/(3*k+1));
A366646
G.f. A(x) satisfies A(x) = 1 + (x * A(x) / (1 - x))^4.
Original entry on oeis.org
1, 0, 0, 0, 1, 4, 10, 20, 39, 88, 228, 600, 1507, 3652, 8866, 22100, 56365, 144656, 369784, 942480, 2408934, 6196280, 16026652, 41571640, 107959654, 280708560, 731349400, 1910098320, 4999759830, 13109582376, 34421585844, 90500370760, 238272324682
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(n-1, n-4*k)*binomial(4*k, k)/(3*k+1));
A366647
G.f. A(x) satisfies A(x) = 1 + x * (A(x) / (1 - x))^5.
Original entry on oeis.org
1, 1, 10, 100, 1120, 13600, 174352, 2322880, 31846720, 446387200, 6367988480, 92154502912, 1349572428800, 19963252142080, 297843703347200, 4476750466785280, 67724540010278912, 1030392038941573120, 15756269876770734080, 242027462112980172800
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+4*k-1, n-k)*binomial(5*k, k)/(4*k+1));
Showing 1-9 of 9 results.
Comments