cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A213336 G.f. satisfies A(x) = G(x/(1-x)^4) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 8, 64, 568, 5440, 54888, 574848, 6190872, 68132224, 762874568, 8663106496, 99536424952, 1155012037824, 13516570396968, 159340702404352, 1890451582396632, 22555522916988672, 270466907608087944, 3257754635421506368, 39397587357527547320
Offset: 0

Views

Author

Paul D. Hanna, Jun 09 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 64*x^3 + 568*x^4 + 5440*x^5 + 54888*x^6 +...
G.f.: A(x) = G(x/(1-x)^4) where G(x) = 1 + x*G(x)^4 is g.f. of A002293:
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
		

Crossrefs

Cf. A213335, A002293; variants: A006319, A213282.
Partial sums give A349310. - Seiichi Manyama, Oct 03 2023

Programs

  • PARI
    /* G.f. A(x) = G(x/(1-x)^4) where G(x) = 1 + x*G(x)^4: */
    {a(n)=local(A, G=1+x); for(i=1, n, G=1+x*G^4+x*O(x^n)); A=subst(G, x, x/(1-x+x*O(x^n))^4); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* G.f. A(x) = F(x*A(x)^4) where F(x) = 1 + x/F(-x)^4: */
    {a(n)=local(F=1+x+x*O(x^n),A=1); for(i=1, n+1, F=1+x/subst(F^4, x, -x+x*O(x^n))); A=(serreverse(x/F^4)/x)^(1/4);polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = F(x*A(x)^4) where F(x) = 1 + x/F(-x)^4 is the g.f. of A213335.
G.f. A(x) satisfies: A(1 - G(-x)) = G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
a(n) = Sum_{k=0..n} binomial(n+3*k-1,n-k) * binomial(4*k,k)/(3*k+1). - Seiichi Manyama, Oct 03 2023

A213252 G.f. satisfies: A(x) = 1 + x/A(-x)^2.

Original entry on oeis.org

1, 1, 2, -1, -10, 7, 88, -68, -946, 767, 11298, -9425, -144024, 122436, 1919440, -1653776, -26419778, 22992655, 372670246, -326863667, -5358911450, 4729547023, 78264621664, -69424933968, -1157715304760, 1031309398852, 17309542787288, -15474833826028
Offset: 0

Views

Author

Paul D. Hanna, Jun 07 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 - x^3 - 10*x^4 + 7*x^5 + 88*x^6 - 68*x^7 +...
where
x/A(-x)^2 = x + 2*x^2 - x^3 - 10*x^4 + 7*x^5 + 88*x^6 - 68*x^7 +...
A(x)^2 = 1 + 2*x + 5*x^2 + 2*x^3 - 18*x^4 - 10*x^5 + 151*x^6 + 88*x^7 +...
The g.f. G(x) of A006319 begins:
G(x) = 1 + x + 4*x^2 + 16*x^3 + 68*x^4 + 304*x^5 + 1412*x^6 + 6752*x^7 +...
where G(x) = A(x*G(x)^2) and G(x/A(x)^2) = A(x);
also, G(x) = F(x/(1-x)^2) where F(x) = 1 + x*F(x)^2 is g.f. of A000108:
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x/subst(A^2,x,-x+x*O(x^n)));polcoeff(A,n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = G(x/A(x)^2) where G(x) = A(x*G(x)^2) is the g.f. of A006319 (royal paths in a lattice).
G.f. satisfies: A(x) = sqrt( x/Series_Reversion( x*C(x/(1-x)^2)^2 ) ) where C(x) = 1 + x*C(x)^2 = (1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108).
G.f. satisfies: A(x) = A(x)*A(-x) + x/A(x).

A213281 G.f. satisfies: A(x) = 1 + x/A(-x)^3.

Original entry on oeis.org

1, 1, 3, -3, -35, 48, 693, -1046, -16635, 26328, 442396, -720327, -12541509, 20810208, 371430414, -624691212, -11356013899, 19293440712, 355703260500, -609103135196, -11355804637164, 19568456886336, 368147199241021, -637674031240302, -12087185276792061
Offset: 0

Views

Author

Paul D. Hanna, Jun 08 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 - 3*x^3 - 35*x^4 + 48*x^5 + 693*x^6 - 1046*x^7 +...
where
1/A(-x) = 1 + x - 2*x^2 - 8*x^3 + 30*x^4 + 143*x^5 - 638*x^6 - 3272*x^7 +...
x/A(-x)^3 = x + 3*x^2 - 3*x^3 - 35*x^4 + 48*x^5 + 693*x^6 - 1046*x^7 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 10*x^3 - 87*x^4 - 102*x^5 + 1632*x^6 + 1974*x^7 +...
The g.f. G(x) of A213282 begins:
G(x) = 1 + x + 6*x^2 + 36*x^3 + 236*x^4 + 1656*x^5 + 12192*x^6 + 92960*x^7 +...
where G(x) = A(x*G(x)^3) and G(x/A(x)^3) = A(x);
also, G(x) = F(x/(1-x)^3) where F(x) = 1 + x*F(x)^3 is g.f. of A001764:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x/subst(A^3,x,-x+x*O(x^n)));polcoeff(A,n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = G(x/A(x)^3) where G(x) = A(x*G(x)^3) is the g.f. of A213282.
G.f. satisfies: A(x) = ( x/Series_Reversion( x*F(x/(1-x)^3)^3 ) )^(1/3) where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.
G.f. satisfies: A(x) = A(x)*A(-x) + x/A(x)^2.

A143046 G.f. A(x) satisfies A(x) = 1 + x*A(-x)^3.

Original entry on oeis.org

1, 1, -3, -6, 35, 87, -588, -1578, 11511, 32223, -245883, -706824, 5556564, 16267508, -130617600, -387533058, 3161190783, 9474886287, -78241316361, -236394953670, 1971270824859, 5994591989967, -50388913722480, -154052058035736
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2008

Keywords

Examples

			G.f.: A(x) = 1 + x - 3*x^2 - 6*x^3 + 35*x^4 + 87*x^5 - 588*x^6 - 1578*x^7 +...
where
A(x)^3 = 1 + 3*x - 6*x^2 - 35*x^3 + 87*x^4 + 588*x^5 - 1578*x^6 - 11511*x^7 +...
A(x)^4 = 1 + 4*x - 6*x^2 - 56*x^3 + 87*x^4 + 1008*x^5 - 1578*x^6 - 20464*x^7 +...
Note that a bisection of A^4 equals a bisection of A^3.
		

Crossrefs

Programs

  • PARI
    a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^3);polcoeff(A,n)

Formula

G.f. satisfies: A(x) = 1 + x*(1 - x*A(x)^3)^3.
G.f. satisfies: [A(x)^4 + A(-x)^4]/2 = [A(x)^3 + A(-x)^3]/2.
a(0) = 1; a(n) = (-1)^(n-1) * Sum_{i, j, k>=0 and i+j+k=n-1} a(i) * a(j) * a(k). - Seiichi Manyama, Jul 08 2025

A143047 G.f. A(x) satisfies A(x) = 1 + x*A(-x)^4.

Original entry on oeis.org

1, 1, -4, -10, 84, 265, -2604, -8900, 94692, 337940, -3767312, -13812674, 158785964, 593029550, -6967201736, -26372738120, 314904180100, 1204230041900, -14560722724912, -56130528427400, 685514219386576, 2659770565898729, -32749512944380172
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2008

Keywords

Examples

			A(x) = 1 + x - 4*x^2 - 10*x^3 + 84*x^4 + 265*x^5 - 2604*x^6 - 8900*x^7 +...
A(x)^4 = 1 + 4*x - 10*x^2 - 84*x^3 + 265*x^4 + 2604*x^5 - 8900*x^6 -...
A(x)^5 = 1 + 5*x - 10*x^2 - 120*x^3 + 265*x^4 + 3906*x^5 - 8900*x^6 -...
Note that a bisection of A^5 equals a bisection of A^4.
		

Crossrefs

Programs

  • PARI
    a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^4);polcoeff(A,n)

Formula

G.f. satisfies: A(x) = 1 + x*(1 - x*A(x)^4)^4.
G.f. satisfies: [A(x)^5 + A(-x)^5]/2 = [A(x)^4 + A(-x)^4]/2.
a(0) = 1; a(n) = (-1)^(n-1) * Sum_{i, j, k, l>=0 and i+j+k+l=n-1} a(i) * a(j) * a(k) * a(l). - Seiichi Manyama, Jul 08 2025

A143048 G.f. A(x) satisfies A(x) = 1 + x*A(-x)^5.

Original entry on oeis.org

1, 1, -5, -15, 165, 630, -8151, -33780, 474045, 2052495, -30206330, -134392230, 2040588775, 9248893360, -143569282680, -659546365020, 10407737293965, 48303692377425, -771991701692175, -3611789245335285, 58311219888996170, 274581478640096340
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2008

Keywords

Examples

			A(x) = 1 + x - 5*x^2 - 15*x^3 + 165*x^4 + 630*x^5 - 8151*x^6 -++-...
A(x)^5 = 1 + 5*x - 15*x^2 - 165*x^3 + 630*x^4 + 8151*x^5 - 33780*x^6 -...
A(x)^6 = 1 + 6*x - 15*x^2 - 220*x^3 + 630*x^4 + 11286*x^5 - 33780*x^6 -...
Note that a bisection of A^6 equals a bisection of A^5.
		

Crossrefs

Programs

  • PARI
    a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^5);polcoeff(A,n)

Formula

G.f. satisfies: A(x) = 1 + x*(1 - x*A(x)^5)^5.
G.f. satisfies: [A(x)^6 + A(-x)^6]/2 = [A(x)^5 + A(-x)^5]/2.
a(0) = 1; a(n) = (-1)^(n-1) * Sum_{i, j, k, l, m>=0 and i+j+k+l+m=n-1} a(i) * a(j) * a(k) * a(l) * a(m). - Seiichi Manyama, Jul 08 2025

A143049 G.f. A(x) satisfies A(x) = 1 + x*A(-x)^6.

Original entry on oeis.org

1, 1, -6, -21, 286, 1281, -20592, -100226, 1749462, 8899086, -162993402, -852079872, 16106878320, 85783258295, -1658113447608, -8950840125828, 175904428301062, 959332126312266, -19096256882857668, -104984591307499239, 2111233112316364434
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2008

Keywords

Examples

			A(x) = 1 + x - 6*x^2 - 21*x^3 + 286*x^4 + 1281*x^5 - 20592*x^6 -++-...
A(x)^6 = 1 + 6*x - 21*x^2 - 286*x^3 + 1281*x^4 + 20592*x^5 - 100226*x^6 -...
A(x)^7 = 1 + 7*x - 21*x^2 - 364*x^3 + 1281*x^4 + 27027*x^5 - 100226*x^6 -...
Note that a bisection of A^7 equals a bisection of A^6.
		

Crossrefs

Programs

  • PARI
    a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^6);polcoeff(A,n)

Formula

G.f. satisfies: A(x) = 1 + x*(1 - x*A(x)^6)^6.
G.f. satisfies: [A(x)^7 + A(-x)^7]/2 = [A(x)^6 + A(-x)^6]/2.
a(0) = 1; a(n) = (-1)^(n-1) * Sum_{x_1, x_2, ..., x_6>=0 and x_1+x_2+...+x_6=n-1} Product_{k=1..6} a(x_k). - Seiichi Manyama, Jul 08 2025
Showing 1-7 of 7 results.