A143547
G.f. A(x) satisfies A(x) = 1 + x*A(x)^4*A(-x)^3.
Original entry on oeis.org
1, 1, 1, 4, 7, 34, 70, 368, 819, 4495, 10472, 59052, 141778, 814506, 1997688, 11633440, 28989675, 170574723, 430321633, 2552698720, 6503352856, 38832808586, 99726673130, 598724403680, 1547847846090, 9335085772194, 24269405074740, 146936230074004, 383846168712104
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 7*x^4 + 34*x^5 + 70*x^6 + 368*x^7 + ...
Let G(x) = 1 + x*G(x)^7 be the g.f. of A002296, then
A(x)*A(-x) = G(x^2) and A(x) = G(x^2) + x*G(x^2)^4 where
G(x) = 1 + x + 7*x^2 + 70*x^3 + 819*x^4 + 10472*x^5 + 141778*x^6 + ...
G(x)^4 = 1 + 4*x + 34*x^2 + 368*x^3 + 4495*x^4 + 59052*x^5 + ...
form the bisections of A(x).
By definition, A(x) = 1 + x*A(x)^4*A(-x)^3 where
A(x)^4 = 1 + 4*x + 10*x^2 + 32*x^3 + 95*x^4 + 332*x^5 + 1074*x^6 + ...
A(-x)^3 = 1 - 3*x + 6*x^2 - 19*x^3 + 51*x^4 - 183*x^5 + 550*x^6 -+ ...
-
terms = 26;
A[] = 1; Do[A[x] = 1 + x A[x]^4 A[-x]^3 + O[x]^terms // Normal, {terms}];
CoefficientList[A[x], x] (* Jean-François Alcover, Jul 24 2018 *)
-
{a(n)=my(A=1+O(x^(n+1)));for(i=0,n,A=1+x*A^4*subst(A^3,x,-x));polcoef(A,n)}
-
{a(n)=my(m=n\2,p=3*(n%2)+1);binomial(7*m+p-1,m)*p/(6*m+p)}
A143045
G.f.: A(x) = x + A(-x)^2.
Original entry on oeis.org
1, 1, -2, -3, 10, 18, -68, -131, 530, 1062, -4476, -9198, 39844, 83332, -368136, -780003, 3497058, 7483806, -33940940, -73210874, 335103340, 727473084, -3355045304, -7322240718, 33982884884, 74498594492, -347600543192, -764936992764, 3585459509640, 7916276980872, -37253166379536
Offset: 1
A(x) = x + x^2 - 2*x^3 - 3*x^4 + 10*x^5 + 18*x^6 - 68*x^7 - 131*x^8 +...
A(x)^2 = x^2 + 2*x^3 - 3*x^4 - 10*x^5 + 18*x^6 + 68*x^7 - 131*x^8 - 530*x^9 +...
A(x)^3 = x^3 + 3*x^4 - 3*x^5 - 20*x^6 + 18*x^7 + 153*x^8 - 131*x^9 -++-...
Note that a bisection of A^3 equals a bisection of A.
-
Rest[CoefficientList[1 + InverseSeries[Series[(Sqrt[1+4*x-4*x^2]-1)/2 + x^2, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Dec 27 2013 *)
-
{a(n)=if(n<1,0,polcoeff(serreverse((sqrt(1+4*x-4*x^2 +x*O(x^n))-1)/2 + x^2),n))}
-
{a(n)=local(A=x+x^2);for(i=0,n,A=x+subst(A,x,(-x+x*O(x^n)))^2);polcoeff(A,n)}
-
{a(n)=local(A=x+x*O(x^n));for(i=0,n,A = x + x^2 - 2*x*A^2 + A^4);polcoeff(A,n)}
A143047
G.f. A(x) satisfies A(x) = 1 + x*A(-x)^4.
Original entry on oeis.org
1, 1, -4, -10, 84, 265, -2604, -8900, 94692, 337940, -3767312, -13812674, 158785964, 593029550, -6967201736, -26372738120, 314904180100, 1204230041900, -14560722724912, -56130528427400, 685514219386576, 2659770565898729, -32749512944380172
Offset: 0
A(x) = 1 + x - 4*x^2 - 10*x^3 + 84*x^4 + 265*x^5 - 2604*x^6 - 8900*x^7 +...
A(x)^4 = 1 + 4*x - 10*x^2 - 84*x^3 + 265*x^4 + 2604*x^5 - 8900*x^6 -...
A(x)^5 = 1 + 5*x - 10*x^2 - 120*x^3 + 265*x^4 + 3906*x^5 - 8900*x^6 -...
Note that a bisection of A^5 equals a bisection of A^4.
-
a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^4);polcoeff(A,n)
A143048
G.f. A(x) satisfies A(x) = 1 + x*A(-x)^5.
Original entry on oeis.org
1, 1, -5, -15, 165, 630, -8151, -33780, 474045, 2052495, -30206330, -134392230, 2040588775, 9248893360, -143569282680, -659546365020, 10407737293965, 48303692377425, -771991701692175, -3611789245335285, 58311219888996170, 274581478640096340
Offset: 0
A(x) = 1 + x - 5*x^2 - 15*x^3 + 165*x^4 + 630*x^5 - 8151*x^6 -++-...
A(x)^5 = 1 + 5*x - 15*x^2 - 165*x^3 + 630*x^4 + 8151*x^5 - 33780*x^6 -...
A(x)^6 = 1 + 6*x - 15*x^2 - 220*x^3 + 630*x^4 + 11286*x^5 - 33780*x^6 -...
Note that a bisection of A^6 equals a bisection of A^5.
-
a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^5);polcoeff(A,n)
A143049
G.f. A(x) satisfies A(x) = 1 + x*A(-x)^6.
Original entry on oeis.org
1, 1, -6, -21, 286, 1281, -20592, -100226, 1749462, 8899086, -162993402, -852079872, 16106878320, 85783258295, -1658113447608, -8950840125828, 175904428301062, 959332126312266, -19096256882857668, -104984591307499239, 2111233112316364434
Offset: 0
A(x) = 1 + x - 6*x^2 - 21*x^3 + 286*x^4 + 1281*x^5 - 20592*x^6 -++-...
A(x)^6 = 1 + 6*x - 21*x^2 - 286*x^3 + 1281*x^4 + 20592*x^5 - 100226*x^6 -...
A(x)^7 = 1 + 7*x - 21*x^2 - 364*x^3 + 1281*x^4 + 27027*x^5 - 100226*x^6 -...
Note that a bisection of A^7 equals a bisection of A^6.
-
a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^6);polcoeff(A,n)
A143553
G.f. A(x) satisfies A(x) = 1 + x*A(x)^5*A(-x)^3.
Original entry on oeis.org
1, 1, 2, 14, 50, 432, 1818, 17082, 77714, 763967, 3637718, 36786268, 180481258, 1860798032, 9324573430, 97502825964, 496344066386, 5245970686152, 27032002846992, 288124627083382, 1499144278319270, 16087838913122064
Offset: 0
G.f. A(x) = 1 + x + 2*x^2 + 14*x^3 + 50*x^4 + 432*x^5 + 1818*x^6 +...
Related expansions:
A(x)^5 = 1 + 5*x + 20*x^2 + 120*x^3 + 635*x^4 + 4301*x^5 + 25360*x^6 +...
A(-x)^3 = 1 - 3*x + 9*x^2 - 55*x^3 + 252*x^4 - 1818*x^5 + 9560*x^6 -+...
A(x)*A(-x) = 1 + 3*x^2 + 76*x^4 + 2776*x^6 + 118940*x^8 +...
[A(x)*A(-x)]^8 = 1 + 24*x^2 + 860*x^4 + 36488*x^6 + 1700198*x^8 +...
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*A^5*subst(A^3,x,-x));polcoeff(A,n)}
Showing 1-6 of 6 results.
Comments