A143045
G.f.: A(x) = x + A(-x)^2.
Original entry on oeis.org
1, 1, -2, -3, 10, 18, -68, -131, 530, 1062, -4476, -9198, 39844, 83332, -368136, -780003, 3497058, 7483806, -33940940, -73210874, 335103340, 727473084, -3355045304, -7322240718, 33982884884, 74498594492, -347600543192, -764936992764, 3585459509640, 7916276980872, -37253166379536
Offset: 1
A(x) = x + x^2 - 2*x^3 - 3*x^4 + 10*x^5 + 18*x^6 - 68*x^7 - 131*x^8 +...
A(x)^2 = x^2 + 2*x^3 - 3*x^4 - 10*x^5 + 18*x^6 + 68*x^7 - 131*x^8 - 530*x^9 +...
A(x)^3 = x^3 + 3*x^4 - 3*x^5 - 20*x^6 + 18*x^7 + 153*x^8 - 131*x^9 -++-...
Note that a bisection of A^3 equals a bisection of A.
-
Rest[CoefficientList[1 + InverseSeries[Series[(Sqrt[1+4*x-4*x^2]-1)/2 + x^2, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Dec 27 2013 *)
-
{a(n)=if(n<1,0,polcoeff(serreverse((sqrt(1+4*x-4*x^2 +x*O(x^n))-1)/2 + x^2),n))}
-
{a(n)=local(A=x+x^2);for(i=0,n,A=x+subst(A,x,(-x+x*O(x^n)))^2);polcoeff(A,n)}
-
{a(n)=local(A=x+x*O(x^n));for(i=0,n,A = x + x^2 - 2*x*A^2 + A^4);polcoeff(A,n)}
A143046
G.f. A(x) satisfies A(x) = 1 + x*A(-x)^3.
Original entry on oeis.org
1, 1, -3, -6, 35, 87, -588, -1578, 11511, 32223, -245883, -706824, 5556564, 16267508, -130617600, -387533058, 3161190783, 9474886287, -78241316361, -236394953670, 1971270824859, 5994591989967, -50388913722480, -154052058035736
Offset: 0
G.f.: A(x) = 1 + x - 3*x^2 - 6*x^3 + 35*x^4 + 87*x^5 - 588*x^6 - 1578*x^7 +...
where
A(x)^3 = 1 + 3*x - 6*x^2 - 35*x^3 + 87*x^4 + 588*x^5 - 1578*x^6 - 11511*x^7 +...
A(x)^4 = 1 + 4*x - 6*x^2 - 56*x^3 + 87*x^4 + 1008*x^5 - 1578*x^6 - 20464*x^7 +...
Note that a bisection of A^4 equals a bisection of A^3.
-
a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^3);polcoeff(A,n)
A143047
G.f. A(x) satisfies A(x) = 1 + x*A(-x)^4.
Original entry on oeis.org
1, 1, -4, -10, 84, 265, -2604, -8900, 94692, 337940, -3767312, -13812674, 158785964, 593029550, -6967201736, -26372738120, 314904180100, 1204230041900, -14560722724912, -56130528427400, 685514219386576, 2659770565898729, -32749512944380172
Offset: 0
A(x) = 1 + x - 4*x^2 - 10*x^3 + 84*x^4 + 265*x^5 - 2604*x^6 - 8900*x^7 +...
A(x)^4 = 1 + 4*x - 10*x^2 - 84*x^3 + 265*x^4 + 2604*x^5 - 8900*x^6 -...
A(x)^5 = 1 + 5*x - 10*x^2 - 120*x^3 + 265*x^4 + 3906*x^5 - 8900*x^6 -...
Note that a bisection of A^5 equals a bisection of A^4.
-
a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^4);polcoeff(A,n)
A143048
G.f. A(x) satisfies A(x) = 1 + x*A(-x)^5.
Original entry on oeis.org
1, 1, -5, -15, 165, 630, -8151, -33780, 474045, 2052495, -30206330, -134392230, 2040588775, 9248893360, -143569282680, -659546365020, 10407737293965, 48303692377425, -771991701692175, -3611789245335285, 58311219888996170, 274581478640096340
Offset: 0
A(x) = 1 + x - 5*x^2 - 15*x^3 + 165*x^4 + 630*x^5 - 8151*x^6 -++-...
A(x)^5 = 1 + 5*x - 15*x^2 - 165*x^3 + 630*x^4 + 8151*x^5 - 33780*x^6 -...
A(x)^6 = 1 + 6*x - 15*x^2 - 220*x^3 + 630*x^4 + 11286*x^5 - 33780*x^6 -...
Note that a bisection of A^6 equals a bisection of A^5.
-
a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^5);polcoeff(A,n)
A171206
G.f. A(x) satisfies A(x) = 1 + x*A(2*x)^6.
Original entry on oeis.org
1, 1, 12, 348, 19744, 2108784, 428817600, 169398274624, 131889504749568, 203937600707475456, 628561895904796999680, 3868208404121906515820544, 47571342639450113377565933568, 1169589733863427138021074362433536, 57499379103783344787572704263568097280, 5652994168279651703590653986228287051923456
Offset: 0
-
terms = 16; A[] = 0; Do[A[x] = 1+x*A[2x]^6 + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Apr 02 2025 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A, x, 2*x)^6); polcoeff(A, n)}
A192894
Number of symmetric 13-ary factorizations of the n-cycle (1,2...n).
Original entry on oeis.org
1, 1, 1, 7, 13, 112, 247, 2310, 5525, 53998, 135408, 1360289, 3518515, 36017352, 95223414, 988172368, 2655417765, 27844071255, 75769712590, 801012669457, 2201663313200, 23428926096576, 64924369564353, 694644371065372, 1938034271677595, 20829931845958872, 58448142042957576
Offset: 0
Showing 1-6 of 6 results.
Comments