A143554
G.f. A(x) satisfies A(x) = 1 + x*A(x)^5*A(-x)^4.
Original entry on oeis.org
1, 1, 1, 5, 9, 55, 117, 775, 1785, 12350, 29799, 211876, 527085, 3818430, 9706503, 71282640, 184138713, 1366368375, 3573805950, 26735839650, 70625252863, 531838637759, 1416298046436, 10723307329700, 28748759731965, 218658647805780, 589546754316126
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 5*x^3 + 9*x^4 + 55*x^5 + 117*x^6 + 775*x^7 +...
Let G(x) = 1 + x*G(x)^9 be the g.f. of A062994, then
G(x^2) = A(x)*A(-x) and A(x) = G(x^2) + x*G(x^2)^5 where
G(x) = 1 + x + 9*x^2 + 117*x^3 + 1785*x^4 + 29799*x^5 + 527085*x^6 +...
G(x)^5 = 1 + 5*x + 55*x^2 + 775*x^3 + 12350*x^4 + 211876*x^5 +...
-
terms = 25;
A[] = 1; Do[A[x] = 1 + x A[x]^5 A[-x]^4 + O[x]^terms // Normal, {terms}];
CoefficientList[A[x], x] (* Jean-François Alcover, Jul 24 2018 *)
-
{a(n)=my(A=1+x*O(x^n));for(i=0,n,A=1+x*A^5*subst(A^4,x,-x));polcoef(A,n)}
-
{a(n)=my(m=n\2,p=4*(n%2)+1);binomial(9*m+p-1,m)*p/(8*m+p)}
A213335
G.f. satisfies: A(x) = 1 + x/A(-x)^4.
Original entry on oeis.org
1, 1, 4, -6, -84, 171, 2940, -6576, -124260, 291321, 5810120, -14012244, -289392508, 711239741, 15052561056, -37498302048, -808073773572, 2033589755205, 44436219882252, -112715767473482, -2490257138332712, 6356863001632326, 141706826771491368
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 - 6*x^3 - 84*x^4 + 171*x^5 + 2940*x^6 - 6576*x^7 +...
where
1/A(-x) = 1 + x - 3*x^2 - 13*x^3 + 77*x^4 + 402*x^5 - 2849*x^6 - 16040*x^7 +...
1/A(-x)^4 = 1 + 4*x - 6*x^2 - 84*x^3 + 171*x^4 + 2940*x^5 - 6576*x^6 +...
A(x)^4 = 1 + 4*x + 22*x^2 + 28*x^3 - 263*x^4 - 476*x^5 + 8740*x^6 +...
The g.f. G(x) of A213336 begins:
G(x) = 1 + x + 8*x^2 + 64*x^3 + 568*x^4 + 5440*x^5 + 54888*x^6 +...
where G(x) = A(x*G(x)^4) and G(x/A(x)^4) = A(x);
also, G(x) = F(x/(1-x)^4) where F(x) = 1 + x*F(x)^4 is g.f. of A002293:
F(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=1+x/subst(A^4, x, -x+x*O(x^n))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
A143046
G.f. A(x) satisfies A(x) = 1 + x*A(-x)^3.
Original entry on oeis.org
1, 1, -3, -6, 35, 87, -588, -1578, 11511, 32223, -245883, -706824, 5556564, 16267508, -130617600, -387533058, 3161190783, 9474886287, -78241316361, -236394953670, 1971270824859, 5994591989967, -50388913722480, -154052058035736
Offset: 0
G.f.: A(x) = 1 + x - 3*x^2 - 6*x^3 + 35*x^4 + 87*x^5 - 588*x^6 - 1578*x^7 +...
where
A(x)^3 = 1 + 3*x - 6*x^2 - 35*x^3 + 87*x^4 + 588*x^5 - 1578*x^6 - 11511*x^7 +...
A(x)^4 = 1 + 4*x - 6*x^2 - 56*x^3 + 87*x^4 + 1008*x^5 - 1578*x^6 - 20464*x^7 +...
Note that a bisection of A^4 equals a bisection of A^3.
-
a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^3);polcoeff(A,n)
A143048
G.f. A(x) satisfies A(x) = 1 + x*A(-x)^5.
Original entry on oeis.org
1, 1, -5, -15, 165, 630, -8151, -33780, 474045, 2052495, -30206330, -134392230, 2040588775, 9248893360, -143569282680, -659546365020, 10407737293965, 48303692377425, -771991701692175, -3611789245335285, 58311219888996170, 274581478640096340
Offset: 0
A(x) = 1 + x - 5*x^2 - 15*x^3 + 165*x^4 + 630*x^5 - 8151*x^6 -++-...
A(x)^5 = 1 + 5*x - 15*x^2 - 165*x^3 + 630*x^4 + 8151*x^5 - 33780*x^6 -...
A(x)^6 = 1 + 6*x - 15*x^2 - 220*x^3 + 630*x^4 + 11286*x^5 - 33780*x^6 -...
Note that a bisection of A^6 equals a bisection of A^5.
-
a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^5);polcoeff(A,n)
A143049
G.f. A(x) satisfies A(x) = 1 + x*A(-x)^6.
Original entry on oeis.org
1, 1, -6, -21, 286, 1281, -20592, -100226, 1749462, 8899086, -162993402, -852079872, 16106878320, 85783258295, -1658113447608, -8950840125828, 175904428301062, 959332126312266, -19096256882857668, -104984591307499239, 2111233112316364434
Offset: 0
A(x) = 1 + x - 6*x^2 - 21*x^3 + 286*x^4 + 1281*x^5 - 20592*x^6 -++-...
A(x)^6 = 1 + 6*x - 21*x^2 - 286*x^3 + 1281*x^4 + 20592*x^5 - 100226*x^6 -...
A(x)^7 = 1 + 7*x - 21*x^2 - 364*x^3 + 1281*x^4 + 27027*x^5 - 100226*x^6 -...
Note that a bisection of A^7 equals a bisection of A^6.
-
a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^6);polcoeff(A,n)
A171202
G.f. A(x) satisfies A(x) = 1 + x*A(2*x)^4.
Original entry on oeis.org
1, 1, 8, 152, 5664, 399376, 53846016, 14141384704, 7330134466560, 7551251740344320, 15510852680588984320, 63626087316632048238592, 521607805205244557347782656, 8549156556447111748331767857152, 280190094729160875643888549840814080, 18364219805837823940403573170370661842944
Offset: 0
-
terms = 16; A[] = 0; Do[A[x] = 1 + x*A[2x]^4 + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Apr 02 2025 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A, x, 2*x)^4); polcoeff(A, n)}
Showing 1-6 of 6 results.
Comments