cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A143554 G.f. A(x) satisfies A(x) = 1 + x*A(x)^5*A(-x)^4.

Original entry on oeis.org

1, 1, 1, 5, 9, 55, 117, 775, 1785, 12350, 29799, 211876, 527085, 3818430, 9706503, 71282640, 184138713, 1366368375, 3573805950, 26735839650, 70625252863, 531838637759, 1416298046436, 10723307329700, 28748759731965, 218658647805780, 589546754316126
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2008

Keywords

Comments

Number of achiral noncrossing partitions composed of n blocks of size 9. - Andrew Howroyd, Feb 08 2024

Examples

			G.f.: A(x) = 1 + x + x^2 + 5*x^3 + 9*x^4 + 55*x^5 + 117*x^6 + 775*x^7 +...
Let G(x) = 1 + x*G(x)^9 be the g.f. of A062994, then
G(x^2) = A(x)*A(-x) and A(x) = G(x^2) + x*G(x^2)^5 where
G(x) = 1 + x + 9*x^2 + 117*x^3 + 1785*x^4 + 29799*x^5 + 527085*x^6 +...
G(x)^5 = 1 + 5*x + 55*x^2 + 775*x^3 + 12350*x^4 + 211876*x^5 +...
		

Crossrefs

Column k=9 of A369929 and k=10 of A370062.
Cf. A143338, A143546, A143547, A143550, A062994 (bisection).
Cf. A143047.

Programs

  • Mathematica
    terms = 25;
    A[] = 1; Do[A[x] = 1 + x A[x]^5 A[-x]^4 + O[x]^terms // Normal, {terms}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Jul 24 2018 *)
  • PARI
    {a(n)=my(A=1+x*O(x^n));for(i=0,n,A=1+x*A^5*subst(A^4,x,-x));polcoef(A,n)}
    
  • PARI
    {a(n)=my(m=n\2,p=4*(n%2)+1);binomial(9*m+p-1,m)*p/(8*m+p)}

Formula

G.f. satisfies: A(x) = [A(x)*A(-x)] + x*[A(x)*A(-x)]^5.
G.f. satisfies: A(x)*A(-x) = (A(x) + A(-x))/2 = G(x^2) where G(x) = 1 + x*G(x)^9 is the g.f. of A062994.
a(2n) = binomial(9*n,n)/(8*n+1); a(2n+1) = binomial(9*n+4,n)*5/(8*n+5).
a(0) = 1; a(n) = Sum_{i, j, k, l, m>=0 and i+2*j+2*k+2*l+2*m=n-1} a(i) * a(2*j) * a(2*k) * a(2*l) * a(2*m). - Seiichi Manyama, Jul 07 2025
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_9>=0 and x_1+x_2+...+x_9=n-1} (-1)^(x_1+x_2+x_3+x_4) * Product_{k=1..9} a(x_k). - Seiichi Manyama, Jul 09 2025

A233835 a(n) = 8*binomial(7*n + 8, n)/(7*n + 8).

Original entry on oeis.org

1, 8, 84, 1008, 13090, 179088, 2542512, 37106784, 553270671, 8391423040, 129058047580, 2008018827360, 31550226597162, 499892684834368, 7978140653296800, 128138773298754240, 2069603881026760323, 33593111381834512200, 547698081896206040800, 8965330544164089648000, 147285313888568167177866
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r, n)/(n*p + r); this is the case p = 7, r = 8.

Crossrefs

Cf. A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233668 (k = 6), A233743 (k = 7), A234467 (k = 9), A232265 (k = 10), A229963 (k = 11).

Programs

  • Magma
    [8*Binomial(7*n+8, n)/(7*n+8): n in [0..30]];
  • Mathematica
    Table[8 Binomial[7 n + 8, n]/(7 n + 8), {n, 0, 30}]
  • PARI
    a(n) = 8*binomial(7*n+8,n)/(7*n+8);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/8))^8+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 7, r = 8.
From _Peter Bala, Oct 16 2015: (Start)
O.g.f. A(x) = 1/x * series reversion (x*C(-x)^8), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/8) is the o.g.f. for A002296. (End)

A233834 a(n) = 5*binomial(7*n+5,n)/(7*n+5).

Original entry on oeis.org

1, 5, 45, 500, 6200, 82251, 1142295, 16398200, 241379325, 3623534200, 55262073757, 853814730600, 13335836817420, 210225027967325, 3340362288091500, 53443628421286320, 860246972339613855, 13921016318025200505, 226352372251889455000, 3696160728052814340000
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p = 7, r = 5.

Crossrefs

Programs

  • Magma
    [5*Binomial(7*n+5, n)/(7*n+5): n in [0..30]];
  • Mathematica
    Table[5 Binomial[7 n + 5, n]/(7 n + 5), {n, 0, 30}]
  • PARI
    a(n) = 5*binomial(7*n+5,n)/(7*n+5);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/5))^5+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 7, r = 5.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^5), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/5) is the o.g.f. for A002296. - Peter Bala, Oct 14 2015

A369929 Array read by antidiagonals: T(n,k) is the number of achiral noncrossing partitions composed of n blocks of size k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 3, 6, 1, 1, 1, 1, 3, 5, 7, 10, 1, 1, 1, 1, 4, 5, 16, 12, 20, 1, 1, 1, 1, 4, 7, 18, 31, 30, 35, 1, 1, 1, 1, 5, 7, 31, 35, 102, 55, 70, 1, 1, 1, 1, 5, 9, 34, 64, 136, 213, 143, 126, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 07 2024

Keywords

Comments

T(n,2*k-1) is the number of achiral noncrossing k-gonal cacti with n polygons.

Examples

			Array begins:
===============================================
n\k| 1  2   3   4    5    6    7    8     9 ...
---+-------------------------------------------
0  | 1  1   1   1    1    1    1    1     1 ...
1  | 1  1   1   1    1    1    1    1     1 ...
2  | 1  1   1   1    1    1    1    1     1 ...
3  | 1  2   2   3    3    4    4    5     5 ...
4  | 1  3   3   5    5    7    7    9     9 ...
5  | 1  6   7  16   18   31   34   51    55 ...
6  | 1 10  12  31   35   64   70  109   117 ...
7  | 1 20  30 102  136  296  368  651   775 ...
8  | 1 35  55 213  285  663  819 1513  1785 ...
9  | 1 70 143 712 1155 3142 4495 9304 12350 ...
...
		

Crossrefs

Columns are: A000012, A001405(n-1), A047749 (k=3), A369930 (k=4), A143546 (k=5), A143547 (k=7), A143554 (k=9), A192893 (k=11).

Programs

  • PARI
    \\ u(n,k,r) are Fuss-Catalan numbers.
    u(n,k,r) = {r*binomial(k*n + r, n)/(k*n + r)}
    e(n,k) = {sum(j=0, n\2, u(j, k, 1+(n-2*j)*k/2))}
    T(n, k)={if(n==0, 1, if(k%2, if(n%2, 2*u(n\2, k, (k+1)/2), u(n/2, k, 1) + u(n/2-1, k, k)), e(n, k) + if(n%2, u(n\2, k, k/2)))/2)}

Formula

T(n,k) = 2*A303929(n,k) - A303694(n,k).
T(n,2*k-1) = 2*A361239(n,k) - A361236(n,k).

A370062 Array read by antidiagonals: T(n,k) is the number of achiral dissections of a polygon into n k-gons by nonintersecting diagonals, n >= 1, k >= 3.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 4, 7, 5, 1, 1, 3, 5, 9, 12, 5, 1, 1, 4, 6, 18, 22, 30, 14, 1, 1, 4, 7, 21, 35, 52, 55, 14, 1, 1, 5, 8, 34, 51, 136, 140, 143, 42, 1, 1, 5, 9, 38, 70, 190, 285, 340, 273, 42, 1, 1, 6, 10, 55, 92, 368, 506, 1155, 969, 728, 132
Offset: 1

Views

Author

Andrew Howroyd, Feb 08 2024

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.

Examples

			Array begins:
=============================================
n\k|  3   4   5    6    7    8    9    10 ...
---+-----------------------------------------
1  |  1   1   1    1    1    1    1     1 ...
2  |  1   1   1    1    1    1    1     1 ...
3  |  1   2   2    3    3    4    4     5 ...
4  |  2   3   4    5    6    7    8     9 ...
5  |  2   7   9   18   21   34   38    55 ...
6  |  5  12  22   35   51   70   92   117 ...
7  |  5  30  52  136  190  368  468   775 ...
8  | 14  55 140  285  506  819 1240  1785 ...
9  | 14 143 340 1155 1950 4495 6545 12350 ...
  ...
		

Crossrefs

Columns are A208355(n-1), A047749 (k=4), A369472 (k=5), A143546 (k=6), A143547 (k=8), A143554 (k=10), A192893 (k=12).
Cf. A070914 (rooted), A295224 (oriented), A295260 (unoriented), A369929, A370060 (achiral rooted at cell).

Programs

  • PARI
    \\ here u is Fuss-Catalan sequence with p = k-1.
    u(n, k, r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n, k) = {(if(n%2, u((n-1)/2, k, k\2), if(k%2, u(n/2-1, k, k-1), u(n/2, k, 1))))}
    for(n=1, 9, for(k=3, 10, print1(T(n, k), ", ")); print);

Formula

T(n,k) = 2*A295260(n,k) - A295224(n,k).
T(n,2*k+1) = A370060(n,2*k+1).
T(n,2*k) = A369929(n,2*k-1).

A233832 a(n) = 2*binomial(7*n+2,n)/(7*n+2).

Original entry on oeis.org

1, 2, 15, 154, 1827, 23562, 320866, 4540200, 66096459, 983592304, 14894775896, 228784720710, 3555866673450, 55819631671902, 883738853546472, 14094715154157680, 226245021605612955, 3652242142988400570, 59254515909624764575, 965678197027521177200
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=7, r=2.

Crossrefs

Programs

  • Magma
    [2*Binomial(7*n+2, n)/(7*n+2): n in [0..30]];
  • Mathematica
    Table[2 Binomial[7 n + 2, n]/(7 n + 2), {n, 0, 30}]
  • PARI
    a(n) = 2*binomial(7*n+2,n)/(7*n+2);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/2))^2+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=7, r=2.
a(n) = 2*binomial(7n+1, n-1)/n for n>0, a(0)=1. [Bruno Berselli, Jan 19 2014]
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 6F6(2/7,3/7,4/7,5/7,6/7,8/7; 1/2,2/3,5/6,1,7/6,4/3; 823543*x/46656).
a(n) ~ 7^(7*n+3/2)/(sqrt(Pi)*3^(6*n+5/2)*4^(3*n+1)*n^(3/2)). (End)

A143553 G.f. A(x) satisfies A(x) = 1 + x*A(x)^5*A(-x)^3.

Original entry on oeis.org

1, 1, 2, 14, 50, 432, 1818, 17082, 77714, 763967, 3637718, 36786268, 180481258, 1860798032, 9324573430, 97502825964, 496344066386, 5245970686152, 27032002846992, 288124627083382, 1499144278319270, 16087838913122064
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2008

Keywords

Examples

			G.f. A(x) = 1 + x + 2*x^2 + 14*x^3 + 50*x^4 + 432*x^5 + 1818*x^6 +...
Related expansions:
A(x)^5 = 1 + 5*x + 20*x^2 + 120*x^3 + 635*x^4 + 4301*x^5 + 25360*x^6 +...
A(-x)^3 = 1 - 3*x + 9*x^2 - 55*x^3 + 252*x^4 - 1818*x^5 + 9560*x^6 -+...
A(x)*A(-x) = 1 + 3*x^2 + 76*x^4 + 2776*x^6 + 118940*x^8 +...
[A(x)*A(-x)]^8 = 1 + 24*x^2 + 860*x^4 + 36488*x^6 + 1700198*x^8 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*A^5*subst(A^3,x,-x));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) + A(-x) = 1 + [A(x)*A(-x)] + x^2*[A(x)*A(-x)]^8.
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_8>=0 and x_1+x_2+...+x_8=n-1} (-1)^(x_1+x_2+x_3) * Product_{k=1..8} a(x_k). - Seiichi Manyama, Jul 08 2025

A233833 a(n) = 3*binomial(7*n+3, n)/(7*n+3).

Original entry on oeis.org

1, 3, 24, 253, 3045, 39627, 543004, 7718340, 112752783, 1682460520, 25533901536, 392912889915, 6116090678334, 96133810101609, 1523687678528400, 24324750346691480, 390786855500604195, 6313161418594235271, 102494297789621214400, 1671366110239940499000
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=7, r=3.

Crossrefs

Programs

  • Magma
    [3*Binomial(7*n+3, n)/(7*n+3): n in [0..30]];
  • Mathematica
    Table[3 Binomial[7 n + 3, n]/(7 n + 3), {n, 0, 30}]
  • PARI
    a(n)=3*binomial(7*n+3,n)/(7*n+3);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/3))^3+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=7, r=3.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 6F6(3/7,4/7,5/7,6/7,8/7,9/7; 2/3,5/6,1,7/6,4/3,3/2; 823543*x/46656).
a(n) ~ 7^(7*n+5/2)/(sqrt(Pi)*3^(6*n+5/2)*4^(3*n+2)*n^(3/2)). (End)

A233907 9*binomial(7*n+9, n)/(7*n+9).

Original entry on oeis.org

1, 9, 99, 1218, 16065, 222138, 3178140, 46656324, 698868216, 10639125640, 164128169205, 2560224004884, 40314178429707, 639948824981928, 10230035192533800, 164541833894991240, 2660919275605834701, 43239781879996449825, 705687913212419321800, 11561996402992103418000, 190100812111989146008641
Offset: 0

Views

Author

Tim Fulford, Dec 17 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=7, r=9.

Crossrefs

Programs

  • Magma
    [9*Binomial(7*n+9, n)/(7*n+9): n in [0..30]];
  • Mathematica
    Table[9 Binomial[7 n + 9, n]/(7 n + 9), {n, 0, 30}]
  • PARI
    a(n) = 9*binomial(7*n+9,n)/(7*n+9);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/9))^9+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=7, r=9.
D-finite with recurrence 72*n*(6*n+5)*(3*n+2)*(2*n+3)*(3*n+4)*(6*n+7)*a(n) -7*(7*n+4)*(7*n+8)*(7*n+5)*(7*n+2)*(7*n+6)*(7*n+3)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

A233908 10*binomial(7*n+10,n)/(7*n+10).

Original entry on oeis.org

1, 10, 115, 1450, 19425, 271502, 3915100, 57821940, 870238200, 13298907050, 205811513765, 3218995093860, 50802419972395, 808016193159000, 12938696992921000, 208419656266988904, 3374960506795660365, 54907659530154222000, 897060906625956765000
Offset: 0

Views

Author

Tim Fulford, Dec 17 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=7, r=10.

Crossrefs

Programs

  • Magma
    [10*Binomial(7*n+10, n)/(7*n+10): n in [0..30]]; // Vincenzo Librandi, Dec 23 2013
  • Mathematica
    Table[10 Binomial[7 n + 10, n]/(7 n + 10), {n, 0, 40}] (* Vincenzo Librandi, Dec 23 2013 *)
  • PARI
    a(n) = 10*binomial(7*n+10,n)/(7*n+10);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/10))^10+x*O(x^n)); polcoeff(B, n)}
    

Formula

72*n*(6*n+5)*(3*n+5)*(2*n+3)*(3*n+4)*(6*n+7)*a(n) -7*(7*n+4)*(7*n+8)*(7*n+5)*(7*n+9)*(7*n+6)*(7*n+3)*a(n-1)=0. - R. J. Mathar, Dec 22 2013
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=7, r=10.
Showing 1-10 of 14 results. Next