cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A143045 G.f.: A(x) = x + A(-x)^2.

Original entry on oeis.org

1, 1, -2, -3, 10, 18, -68, -131, 530, 1062, -4476, -9198, 39844, 83332, -368136, -780003, 3497058, 7483806, -33940940, -73210874, 335103340, 727473084, -3355045304, -7322240718, 33982884884, 74498594492, -347600543192, -764936992764, 3585459509640, 7916276980872, -37253166379536
Offset: 1

Views

Author

Paul D. Hanna, Jul 19 2008, Jul 20 2008

Keywords

Examples

			A(x) = x + x^2 - 2*x^3 - 3*x^4 + 10*x^5 + 18*x^6 - 68*x^7 - 131*x^8 +...
A(x)^2 = x^2 + 2*x^3 - 3*x^4 - 10*x^5 + 18*x^6 + 68*x^7 - 131*x^8 - 530*x^9 +...
A(x)^3 = x^3 + 3*x^4 - 3*x^5 - 20*x^6 + 18*x^7 + 153*x^8 - 131*x^9 -++-...
Note that a bisection of A^3 equals a bisection of A.
		

Crossrefs

Cf. A143046, A143048, A143049, A213252, A100238 (related by series reversion).

Programs

  • Mathematica
    Rest[CoefficientList[1 + InverseSeries[Series[(Sqrt[1+4*x-4*x^2]-1)/2 + x^2, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Dec 27 2013 *)
  • PARI
    {a(n)=if(n<1,0,polcoeff(serreverse((sqrt(1+4*x-4*x^2 +x*O(x^n))-1)/2 + x^2),n))}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=0,n,A=x+subst(A,x,(-x+x*O(x^n)))^2);polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x*O(x^n));for(i=0,n,A = x + x^2 - 2*x*A^2 + A^4);polcoeff(A,n)}

Formula

G.f.: A(x) = Series_Reversion( (sqrt(1+4*x-4*x^2)-1)/2 + x^2 ).
G.f. satisfies: A(x) = x + ( x - A(x)^2 )^2.
G.f. satisfies: [A(x)^3 - A(-x)^3]/2 = x*[A(x) + A(-x)]/2.
Recurrence: 27*(n-2)*(n-1)*n*(16*n^3 - 160*n^2 + 521*n - 552)*a(n) = 18*(n-2)*(n-1)*(32*n - 105)*a(n-1) - 12*(n-2)*(384*n^5 - 5376*n^4 + 29288*n^3 - 77560*n^2 + 99709*n - 49665)*a(n-2) + 48*(2*n - 7)*(32*n^3 - 248*n^2 + 623*n - 505)*a(n-3) + 64*(n-4)*(2*n - 9)*(2*n - 7)*(16*n^3 - 112*n^2 + 249*n - 175)*a(n-4). - Vaclav Kotesovec, Dec 27 2013
Limit n->infinity |a(n)|^(1/n) = 4/3*sqrt(3+2*sqrt(3)) = 3.3899463424498833... - Vaclav Kotesovec, Dec 27 2013

A213281 G.f. satisfies: A(x) = 1 + x/A(-x)^3.

Original entry on oeis.org

1, 1, 3, -3, -35, 48, 693, -1046, -16635, 26328, 442396, -720327, -12541509, 20810208, 371430414, -624691212, -11356013899, 19293440712, 355703260500, -609103135196, -11355804637164, 19568456886336, 368147199241021, -637674031240302, -12087185276792061
Offset: 0

Views

Author

Paul D. Hanna, Jun 08 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 - 3*x^3 - 35*x^4 + 48*x^5 + 693*x^6 - 1046*x^7 +...
where
1/A(-x) = 1 + x - 2*x^2 - 8*x^3 + 30*x^4 + 143*x^5 - 638*x^6 - 3272*x^7 +...
x/A(-x)^3 = x + 3*x^2 - 3*x^3 - 35*x^4 + 48*x^5 + 693*x^6 - 1046*x^7 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 10*x^3 - 87*x^4 - 102*x^5 + 1632*x^6 + 1974*x^7 +...
The g.f. G(x) of A213282 begins:
G(x) = 1 + x + 6*x^2 + 36*x^3 + 236*x^4 + 1656*x^5 + 12192*x^6 + 92960*x^7 +...
where G(x) = A(x*G(x)^3) and G(x/A(x)^3) = A(x);
also, G(x) = F(x/(1-x)^3) where F(x) = 1 + x*F(x)^3 is g.f. of A001764:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x/subst(A^3,x,-x+x*O(x^n)));polcoeff(A,n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = G(x/A(x)^3) where G(x) = A(x*G(x)^3) is the g.f. of A213282.
G.f. satisfies: A(x) = ( x/Series_Reversion( x*F(x/(1-x)^3)^3 ) )^(1/3) where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.
G.f. satisfies: A(x) = A(x)*A(-x) + x/A(x)^2.

A213335 G.f. satisfies: A(x) = 1 + x/A(-x)^4.

Original entry on oeis.org

1, 1, 4, -6, -84, 171, 2940, -6576, -124260, 291321, 5810120, -14012244, -289392508, 711239741, 15052561056, -37498302048, -808073773572, 2033589755205, 44436219882252, -112715767473482, -2490257138332712, 6356863001632326, 141706826771491368
Offset: 0

Views

Author

Paul D. Hanna, Jun 09 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 - 6*x^3 - 84*x^4 + 171*x^5 + 2940*x^6 - 6576*x^7 +...
where
1/A(-x) = 1 + x - 3*x^2 - 13*x^3 + 77*x^4 + 402*x^5 - 2849*x^6 - 16040*x^7 +...
1/A(-x)^4 = 1 + 4*x - 6*x^2 - 84*x^3 + 171*x^4 + 2940*x^5 - 6576*x^6 +...
A(x)^4 = 1 + 4*x + 22*x^2 + 28*x^3 - 263*x^4 - 476*x^5 + 8740*x^6 +...
The g.f. G(x) of A213336 begins:
G(x) = 1 + x + 8*x^2 + 64*x^3 + 568*x^4 + 5440*x^5 + 54888*x^6 +...
where G(x) = A(x*G(x)^4) and G(x/A(x)^4) = A(x);
also, G(x) = F(x/(1-x)^4) where F(x) = 1 + x*F(x)^4 is g.f. of A002293:
F(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x/subst(A^4, x, -x+x*O(x^n))); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = G(x/A(x)^4) where G(x) = A(x*G(x)^4) is the g.f. of A213336.
G.f. satisfies: A(x) = ( x/Series_Reversion( x*F(x/(1-x)^4)^4 ) )^(1/4) where F(x) = 1 + x*F(x)^4 is the g.f. of A002293.
G.f. satisfies: A(x) = A(x)*A(-x) + x/A(x)^3.

A143046 G.f. A(x) satisfies A(x) = 1 + x*A(-x)^3.

Original entry on oeis.org

1, 1, -3, -6, 35, 87, -588, -1578, 11511, 32223, -245883, -706824, 5556564, 16267508, -130617600, -387533058, 3161190783, 9474886287, -78241316361, -236394953670, 1971270824859, 5994591989967, -50388913722480, -154052058035736
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2008

Keywords

Examples

			G.f.: A(x) = 1 + x - 3*x^2 - 6*x^3 + 35*x^4 + 87*x^5 - 588*x^6 - 1578*x^7 +...
where
A(x)^3 = 1 + 3*x - 6*x^2 - 35*x^3 + 87*x^4 + 588*x^5 - 1578*x^6 - 11511*x^7 +...
A(x)^4 = 1 + 4*x - 6*x^2 - 56*x^3 + 87*x^4 + 1008*x^5 - 1578*x^6 - 20464*x^7 +...
Note that a bisection of A^4 equals a bisection of A^3.
		

Crossrefs

Programs

  • PARI
    a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^3);polcoeff(A,n)

Formula

G.f. satisfies: A(x) = 1 + x*(1 - x*A(x)^3)^3.
G.f. satisfies: [A(x)^4 + A(-x)^4]/2 = [A(x)^3 + A(-x)^3]/2.
a(0) = 1; a(n) = (-1)^(n-1) * Sum_{i, j, k>=0 and i+j+k=n-1} a(i) * a(j) * a(k). - Seiichi Manyama, Jul 08 2025

A143047 G.f. A(x) satisfies A(x) = 1 + x*A(-x)^4.

Original entry on oeis.org

1, 1, -4, -10, 84, 265, -2604, -8900, 94692, 337940, -3767312, -13812674, 158785964, 593029550, -6967201736, -26372738120, 314904180100, 1204230041900, -14560722724912, -56130528427400, 685514219386576, 2659770565898729, -32749512944380172
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2008

Keywords

Examples

			A(x) = 1 + x - 4*x^2 - 10*x^3 + 84*x^4 + 265*x^5 - 2604*x^6 - 8900*x^7 +...
A(x)^4 = 1 + 4*x - 10*x^2 - 84*x^3 + 265*x^4 + 2604*x^5 - 8900*x^6 -...
A(x)^5 = 1 + 5*x - 10*x^2 - 120*x^3 + 265*x^4 + 3906*x^5 - 8900*x^6 -...
Note that a bisection of A^5 equals a bisection of A^4.
		

Crossrefs

Programs

  • PARI
    a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^4);polcoeff(A,n)

Formula

G.f. satisfies: A(x) = 1 + x*(1 - x*A(x)^4)^4.
G.f. satisfies: [A(x)^5 + A(-x)^5]/2 = [A(x)^4 + A(-x)^4]/2.
a(0) = 1; a(n) = (-1)^(n-1) * Sum_{i, j, k, l>=0 and i+j+k+l=n-1} a(i) * a(j) * a(k) * a(l). - Seiichi Manyama, Jul 08 2025

A143048 G.f. A(x) satisfies A(x) = 1 + x*A(-x)^5.

Original entry on oeis.org

1, 1, -5, -15, 165, 630, -8151, -33780, 474045, 2052495, -30206330, -134392230, 2040588775, 9248893360, -143569282680, -659546365020, 10407737293965, 48303692377425, -771991701692175, -3611789245335285, 58311219888996170, 274581478640096340
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2008

Keywords

Examples

			A(x) = 1 + x - 5*x^2 - 15*x^3 + 165*x^4 + 630*x^5 - 8151*x^6 -++-...
A(x)^5 = 1 + 5*x - 15*x^2 - 165*x^3 + 630*x^4 + 8151*x^5 - 33780*x^6 -...
A(x)^6 = 1 + 6*x - 15*x^2 - 220*x^3 + 630*x^4 + 11286*x^5 - 33780*x^6 -...
Note that a bisection of A^6 equals a bisection of A^5.
		

Crossrefs

Programs

  • PARI
    a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^5);polcoeff(A,n)

Formula

G.f. satisfies: A(x) = 1 + x*(1 - x*A(x)^5)^5.
G.f. satisfies: [A(x)^6 + A(-x)^6]/2 = [A(x)^5 + A(-x)^5]/2.
a(0) = 1; a(n) = (-1)^(n-1) * Sum_{i, j, k, l, m>=0 and i+j+k+l+m=n-1} a(i) * a(j) * a(k) * a(l) * a(m). - Seiichi Manyama, Jul 08 2025

A143049 G.f. A(x) satisfies A(x) = 1 + x*A(-x)^6.

Original entry on oeis.org

1, 1, -6, -21, 286, 1281, -20592, -100226, 1749462, 8899086, -162993402, -852079872, 16106878320, 85783258295, -1658113447608, -8950840125828, 175904428301062, 959332126312266, -19096256882857668, -104984591307499239, 2111233112316364434
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2008

Keywords

Examples

			A(x) = 1 + x - 6*x^2 - 21*x^3 + 286*x^4 + 1281*x^5 - 20592*x^6 -++-...
A(x)^6 = 1 + 6*x - 21*x^2 - 286*x^3 + 1281*x^4 + 20592*x^5 - 100226*x^6 -...
A(x)^7 = 1 + 7*x - 21*x^2 - 364*x^3 + 1281*x^4 + 27027*x^5 - 100226*x^6 -...
Note that a bisection of A^7 equals a bisection of A^6.
		

Crossrefs

Programs

  • PARI
    a(n)=local(A=x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,-x)^6);polcoeff(A,n)

Formula

G.f. satisfies: A(x) = 1 + x*(1 - x*A(x)^6)^6.
G.f. satisfies: [A(x)^7 + A(-x)^7]/2 = [A(x)^6 + A(-x)^6]/2.
a(0) = 1; a(n) = (-1)^(n-1) * Sum_{x_1, x_2, ..., x_6>=0 and x_1+x_2+...+x_6=n-1} Product_{k=1..6} a(x_k). - Seiichi Manyama, Jul 08 2025
Showing 1-7 of 7 results.