A214337
Triangle read by rows: T(n,k) = number of rooted maps with n vertices and k faces on a non-orientable surface of type 3/2 (0 <= k <= n).
Original entry on oeis.org
0, 0, 41, 0, 690, 16925, 0, 7150, 237652, 4306778, 0, 58760, 2518957, 56864524, 910734615, 0, 420182, 22417804, 613687758, 11675167470, 174833737848
Offset: 0
Triangle begins:
0;
0, 41;
0, 690, 16925;
0, 7150, 237652, 4306778;
0, 58760, 2518957, 56864524, 910734615;
0, 420182, 22417804, 613687758, 11675167470, 174833737848;
...
A213270
Costas arrays such that the corresponding permutation is an involution.
Original entry on oeis.org
1, 2, 2, 2, 4, 10, 20, 18, 20, 28, 36, 34, 50, 46, 62, 40, 38, 20, 12, 8, 16, 10, 20, 0, 4, 4, 14, 0, 10
Offset: 1
The permutation (4, 7, 9, 1, 6, 5, 2, 8, 3) is an involution and corresponds to a Costas array:
4 7 9 1 6 5 2 8 3 (Permutation: p(1), p(2), p(3), ..., p(n) )
3 2 -8 5 -1 -3 6 -5 (step-1 differences: p(2)-p(1), p(3)-p(2), ... )
5 -6 -3 4 -4 3 1 (step-2 differences: p(3)-p(1), p(4)-p(2), ... )
-3 -1 -4 1 2 -2 (step-3 differences: p(4)-p(1), p(5)-p(2), ... )
2 -2 -7 7 -3 ( etc. )
1 -5 -1 2
-2 1 -6
4 -4
-1
Cf.
A008404 (Costas arrays),
A213271 (Costas arrays that are derangements),
A213338 (Costas arrays that are cyclic),
A213339 (Costas arrays that are connected).
A213271
Costas arrays such that the corresponding permutation is a derangement.
Original entry on oeis.org
0, 1, 2, 2, 18, 42, 66, 168, 300, 910, 1882, 3192, 5320, 7166, 8346, 9042, 7760, 6668, 4620, 2822, 1528, 942, 282, 92, 32, 22, 88, 256, 24
Offset: 1
The permutation (9, 8, 1, 6, 3, 7, 2, 4, 5) is a derangement and corresponds to a Costas array:
9 8 1 6 3 7 2 4 5 (Permutation: p(1), p(2), p(3), ..., p(n) )
-1 -7 5 -3 4 -5 2 1 (step-1 differences: p(2)-p(1), p(3)-p(2), ... )
-8 -2 2 1 -1 -3 3 (step-2 differences: p(3)-p(1), p(4)-p(2), ... )
-3 -5 6 -4 1 -2 (step-3 differences: p(4)-p(1), p(5)-p(2), ... )
-6 -1 1 -2 2 ( etc. )
-2 -6 3 -1
-7 -4 4
-5 -3
-4
Cf.
A008404 (Costas arrays),
A213270 (Costas arrays that are involutions),
A213338 (Costas arrays that are cyclic),
A213339 (Costas arrays that are connected).
A213339
Costas arrays such that the corresponding permutation is connected.
Original entry on oeis.org
1, 1, 2, 6, 26, 80, 152, 348, 628, 1868, 3870, 7014, 11788, 15746, 18388, 19820, 17218, 14344, 9844, 6238, 3430, 1968, 814, 184, 84, 52, 190, 656, 132
Offset: 1
Cf.
A008404 (Costas arrays),
A003319 (connected permutations),
A213270 (Costas arrays that are involutions),
A213271 (Costas arrays that are derangements),
A213338 (Costas arrays that are cyclic).
A213272
Costas arrays such that the terms in each row of the difference table are unique modulo n.
Original entry on oeis.org
1, 2, 0, 8, 0, 12, 0, 0, 0, 40, 0, 48, 0, 0, 0, 128, 0, 108, 0, 0, 0, 220, 0, 0, 0, 0, 0, 336, 0
Offset: 1
The permutation (10, 9, 2, 8, 6, 1, 3, 7, 4, 5) corresponds to a Costas array:
10 9 2 8 6 1 3 7 4 5 (Permutation: p(1), p(2), p(3), ..., p(n) )
-1 -7 6 -2 -5 2 4 -3 1 (step-1 differences: p(2)-p(1), p(3)-p(2), ... )
-8 -1 4 -7 -3 6 1 -2 (step-2 differences: p(3)-p(1), p(4)-p(2), ... )
-2 -3 -1 -5 1 3 2 (step-3 differences: p(4)-p(1), p(5)-p(2), ... )
-4 -8 1 -1 -2 4 ( etc. )
-9 -6 5 -4 -1
-7 -2 2 -3
-3 -5 3
-6 -4
-5
The values in each row are unique also modulo n=10:
10 9 2 8 6 1 3 7 4 5 (Permutation: p(1), p(2), p(3), ..., p(n) )
9 3 6 8 5 2 4 7 1 (step-1 differences: p(2)-p(1), p(3)-p(2), ... )
2 9 4 3 7 6 1 8 (step-2 differences: p(3)-p(1), p(4)-p(2), ... )
8 7 9 5 1 3 2 (step-3 differences: p(4)-p(1), p(5)-p(2), ... )
6 2 1 9 8 4 ( etc. )
1 4 5 6 9
3 8 2 7
7 5 3
4 6
5
Cf.
A008404 (Costas arrays),
A213270 (Costas arrays that are involutions),
A213271 (Costas arrays that are derangements),
A213338 (Costas arrays that are cyclic),
A213339 (Costas arrays that are connected).
Showing 1-5 of 5 results.
Comments