A213385 a(n) = number of refinements of the partition n^1.
1, 2, 3, 7, 15, 43, 131, 468, 1776, 7559, 34022, 166749, 853823, 4682358, 26720781, 161074458, 1004485751, 6576974188, 44322716809, 311440019349, 2247888977510, 16819336465164, 128915407382036, 1021269823516449, 8261243728564640, 68848043979970646
Offset: 1
Keywords
Examples
Referring to the ranked poset L(5) shown in the example in A002846, there are 15 paths that start at ooooo: end point / number of paths ooooo / 1 o oooo / 1 oo ooo / 1 o o ooo / 2 o oo oo / 2 o o o oo / 4 o o o o o / 4 Total a(5) = 15.
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..50
- Olivier Gérard, The ranked posets L(2),...,L(8)
- R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission] See sequence labeled H.
Programs
-
Maple
b:= proc(l) option remember; local n, i, j, t; n:=nops(l); `if`(l[n]=1 and {l[1..n-1][]} minus {0}={}, 1, add(`if`(l[i]=0, 0, add(`if`(l[j]=0 or i=j and l[j]<2, 0, b([seq(`if`(t>n, 0, l[t])-`if`(t=i and t=j, 2, `if`(t=i or t=j, 1, `if`(t=i+j, -1, 0))), t=1..max(n, i+j))])), j=i..n)), i=1..n)) end: g:= proc(n, i, l) `if`(n=0 and i=0, b(l), `if`(i=1, b([n, l[]]), add(g(n-i*j, i-1, `if`(l=[] and j=0, l, [j, l[]])), j=0..n/i))) end: a:= n-> g(n, n, []): seq(a(n), n=1..25); # Alois P. Heinz, Jun 11 2012
-
Mathematica
b[l_List] := b[l] = Module[{n, i, j, t}, n = Length[l]; If[l[[n]] == 1 && Union[ l[[1 ;; n-1]]] ~Complement~ {0} == {}, 1, Sum[If[l[[i]] == 0, 0, Sum[If[l[[j]] == 0 || i == j && l[[j]]<2, 0, b[Table[If[t>n, 0, l[[t]]] - Which[t == i && t == j, 2, t == i || t == j, 1, t == i+j, -1, True, 0], {t, 1, Max[n, i+j]}]]], {j, i, n}] ], {i, 1, n}]]]; g[n_, i_, l_List] := If[n == 0 && i == 0, b[l], If[i == 1, b[ Join[{n}, l]], Sum[g[n-i*j, i-1, If[l == {} && j == 0, l, Join[{j}, l]]], {j, 0, n/i}]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)
Extensions
Definition clarified by David Applegate, Jun 10 2012
More terms from Alois P. Heinz, Jun 11 2012
Edited by Alois P. Heinz at the suggestion of Gus Wiseman, May 02 2016
Comments