A002846
Number of ways of transforming a set of n indistinguishable objects into n singletons via a sequence of n-1 refinements.
Original entry on oeis.org
1, 1, 1, 2, 4, 11, 33, 116, 435, 1832, 8167, 39700, 201785, 1099449, 6237505, 37406458, 232176847, 1513796040, 10162373172, 71158660160, 511957012509, 3819416719742, 29195604706757, 230713267586731, 1861978821637735, 15484368121967620, 131388840051760458
Offset: 1
a(5) = 4 because there are 4 paths from top to bottom in this lattice:
.
ooooo
/ \
o.oooo oo.ooo
| X |
o.o.ooo o.oo.oo
\ /
o.o.o.oo
|
o.o.o.o.o
.
(This is the ranked poset L(5), but drawn vertically rather than horizontally.)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..80
- P. Erdős, R. K. Guy and J. W. Moon, On refining partitions, J. London Math. Soc., 9 (1975), 565-570.
- R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission]
- Olivier Gérard, The ranked posets L(2),...,L(8)
- Gus Wiseman, Hasse Diagrams of Partition Refinement Posets n=1..9
- Gus Wiseman, Hasse Diagrams of Partition Refinement Posets n=1..9, Version 1, [Cached copy, with permission]
- Gus Wiseman, Hasse Diagrams of Partition Refinement Posets n=1..9, Version 2, [Cached copy, with permission]
-
v:= l-> [seq(`if`(i=1 or l[i]>l[i-1], seq(subs(1=[][], sort(subsop(
i=[j, l[i]-j][], l))), j=1..l[i]/2), [][]), i=1..nops(l))]:
b:= proc(l) option remember; `if`(max(l)<2, 1, add(b(h), h=v(l))) end:
a:= n-> b([n]):
seq(a(n), n=1..30); # Alois P. Heinz, Sep 22 2019
-
<Mitch Harris, Jan 19 2006 *)
-
def A002846(n): return Posets.IntegerPartitions(n).chain_polynomial().leading_coefficient() # Max Alekseyev, Dec 23 2015
A265947
Total size of all principal order ideals in the poset of integer partitions of n with the refinement order.
Original entry on oeis.org
1, 1, 3, 6, 14, 26, 55, 99, 192, 340, 619, 1063, 1873, 3129, 5308, 8718, 14385, 23116, 37346, 58949, 93294, 145131, 225623, 345833, 529976, 801675, 1211225, 1811558, 2703327, 3998289, 5901849, 8641160, 12623450, 18315370, 26503133, 38119289, 54691750, 78028166, 111041918, 157250528, 222105633
Offset: 0
a(4) = 14 ordered pairs of partitions: {(4,4), (4,22), (4,31), (4,211), (4,1111), (22,22), (22,211), (22,1111), (31,31), (31,211), (31,1111), (211,211), (211,1111), (1111,1111)}.
-
def A265947(n):
P = Posets.IntegerPartitions(n)
return sum( len(P.order_ideal([p])) for p in P )
-
# Alternative:
def A265947(n):
return Posets.IntegerPartitions(n).relations_number() # F. Chapoton, Feb 26 2020
A213427
Number of ways of refining the partition n^1 to get 1^n.
Original entry on oeis.org
1, 1, 2, 6, 18, 74, 314, 1614, 8650, 52794, 337410, 2373822, 17327770, 136539154, 1115206818, 9671306438, 86529147794, 816066328602, 7904640819682, 80089651530566, 832008919174434, 8983256694817802, 99219778649809162, 1134999470682805134, 13241030890523397154
Offset: 1
-
b:= proc(l) option remember; local i, j, n, t; n:=nops(l);
`if`(n<2, {[0]}, `if`(l[-1]=0, b(subsop(n=NULL, l)), {l,
seq(`if`(l[i]=0, {}[], {seq(b([seq(l[t]-`if`(t=1, l[t],
`if`(t=i, 1, `if`(t=j and t=i-j, -2, `if`(t=j or t=i-j,
-1, 0)))), t=1..n)])[], j=1..i/2)}[]), i=2..n)}))
end:
p:= proc(l) option remember;
`if`(nops(l)=1, 1, add(p(x), x=b(l) minus {l}))
end:
a:= n-> p([0$(n-1), 1]):
seq(a(n), n=1..25); # Alois P. Heinz, Jun 12 2012
A381454
Number of multisets that can be obtained by choosing a strict integer partition of each prime index of n and taking the multiset union.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 4, 2, 2, 1, 5, 1, 6, 2, 2, 3, 8, 1, 3, 4, 1, 2, 10, 2, 12, 1, 3, 5, 4, 1, 15, 6, 4, 2, 18, 2, 22, 3, 2, 8, 27, 1, 3, 3, 5, 4, 32, 1, 6, 2, 6, 10, 38, 2, 46, 12, 2, 1, 8, 3, 54, 5, 8, 4, 64, 1, 76, 15, 3, 6, 6, 4, 89, 2, 1
Offset: 1
The a(25) = 3 multisets are: {3,3}, {1,2,3}, {1,1,2,2}.
Multiset partitions of prime indices:
- For strict multiset partitions with distinct sums (
A321469) see
A381637.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A358914 counts twice-partitions into distinct strict partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A066328,
A213242,
A213385,
A213427,
A293511,
A299200,
A299201,
A299202,
A300385,
A317142.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@prix[n]]]],{n,100}]
A381635
Number of ways to partition the prime indices of n into constant blocks with distinct sums.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1
Offset: 1
The a(432) = 3 multiset partitions:
{{2,2,2},{1,1,1,1}}
{{1},{1,1,1},{2,2,2}}
{{1},{2},{2,2},{1,1,1}}
Note {{2},{2,2},{1,1,1,1}} is not included, as it does not have distinct block-sums.
For distinct blocks instead of sums we have
A050361, after sums
A381715.
Taking block-sums (and sorting) gives
A381716.
Other multiset partitions of prime indices:
A003963 gives product of prime indices.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A213242,
A213385,
A293511,
A299202,
A300385,
A317142,
A381870.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
Table[Length[Select[pfacs[n],UnsameQ@@hwt/@#&]],{n,100}]
A381441
Number of multisets that can be obtained by partitioning the prime indices of n into a set of sets (set system) and taking their sums.
Original entry on oeis.org
1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 5, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 5, 1, 1, 2, 5, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1
The prime indices of 60 are {1,1,2,3}, with partitions into sets of sets:
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1},{2},{1,3}}
{{1},{3},{1,2}}
with block-sums: {1,6}, {3,4}, {1,2,4}, {1,3,3}, which are all different, so a(60) = 4.
For distinct block-sums (instead of blocks) we have
A381634, before sums
A381633.
Other multiset partitions of prime indices:
- For strict multiset partitions with distinct sums (
A321469) see
A381637.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A066328,
A213242,
A213385,
A213427,
A299202,
A300385,
A317142.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Table[Length[Union[Sort[Total/@prix/@#]&/@Select[facs[n],UnsameQ@@#&&And@@SquareFreeQ/@#&]]],{n,100}]
A381078
Number of multisets that can be obtained by partitioning the prime indices of n into a multiset of sets (set multipartition) and taking their sums.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 5, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 2, 5, 1, 2, 2, 5, 1, 3, 1, 2, 2, 2, 2, 5, 1, 2, 1, 2, 1, 6, 2, 2, 2
Offset: 1
The prime indices of 60 are {1,1,2,3}, with set multipartitions:
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1},{1},{2,3}}
{{1},{2},{1,3}}
{{1},{3},{1,2}}
{{1},{1},{2},{3}}
with block-sums: {1,6}, {3,4}, {1,1,5}, {1,2,4}, {1,3,3}, {1,1,2,3}, which are all different multisets, so a(60) = 6.
For distinct blocks we have
A381441.
For distinct block-sums we have
A381634.
Other multiset partitions of prime indices:
- For strict multiset partitions with distinct sums (
A321469) see
A381637.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A025487,
A066328,
A213242,
A213385,
A213427,
A299201,
A299202,
A300385.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
sqfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sqfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[Union[Sort[hwt/@#]&/@sqfacs[n]]],{n,100}]
A381453
Number of multisets that can be obtained by choosing a constant integer partition of each prime index of n and taking the multiset union.
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 3, 1, 3, 2, 2, 2, 4, 3, 4, 1, 2, 3, 4, 2, 6, 2, 3, 2, 3, 4, 4, 3, 4, 4, 2, 1, 4, 2, 6, 3, 6, 4, 8, 2, 2, 6, 4, 2, 6, 3, 4, 2, 6, 3, 4, 4, 5, 4, 4, 3, 8, 4, 2, 4, 6, 2, 8, 1, 8, 4, 2, 2, 6, 6, 6, 3, 4, 6, 6, 4, 6, 8, 4, 2, 5, 2, 2, 6, 4, 4, 8
Offset: 1
The a(21) = 6 multisets are: {2,4}, {1,1,4}, {2,2,2}, {1,1,2,2}, {2,1,1,1,1}, {1,1,1,1,1,1}.
The a(n) partitions for n = 1, 3, 7, 13, 53, 21 (G = 16):
() (2) (4) (6) (G) (42)
(11) (22) (33) (88) (411)
(1111) (222) (4444) (222)
(111111) (22222222) (2211)
(1111111111111111) (21111)
(111111)
Choosing divisors instead of constant multisets gives
A355733.
Multiset partitions of prime indices:
- For strict multiset partitions with distinct sums (
A321469) see
A381637.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A000961,
A001222,
A002577,
A018818,
A213242,
A213385,
A213427,
A275870,
A299200,
A300273,
A300385.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@prix[n]]]],{n,nn}]
A213242
Number of generalizations of the partition 1^n.
Original entry on oeis.org
1, 2, 3, 6, 12, 31, 89, 303, 1119, 4649, 20572, 99241, 502622, 2725840, 15424019, 92211327, 571446565, 3716191974, 24920512847, 174169990243, 1251875604302, 9326245177768, 71241318920624, 562221733320241, 4535497053407716, 37677863148632647, 319551379756283637
Offset: 1
For n=5 there are a(5) = 12 paths to 1^5 = 11111: 11111; 2111->11111; 221->2111->11111; 311->2111->11111; 32->221->2111->11111; 32->311->2111->11111; 41->221->2111->11111; 41->311->2111->11111; 5->32->221->2111->11111; 5->32->311->2111->11111; 5->41->221->2111->11111; 5->41->311->2111->11111.
-
b:= proc(l) option remember; local n, i, j, t; n:=nops(l);
`if`(n<2, 1, `if`(l[n]=0, b(subsop(n=NULL, l)),
add(`if`(l[i]=0, 0, add(b([seq(l[t]-`if`(t=1, l[t],
`if`(t=i, 1, `if`(t=j and t=i-j, -2, `if`(t=j or t=i-j,
-1, 0)))), t=1..n)]), j=1..i/2)), i=2..n)))
end:
g:= proc(n, i, l)
`if`(n=0 and i=0, b(l), `if`(i=1, b([n, l[]]), add(g(n-i*j, i-1,
`if`(l=[] and j=0, l, [j, l[]])), j=0..n/i)))
end:
a:= n-> g(n, n, []):
seq(a(n), n=1..25);
-
b[l_] := b[l] = With[{n = Length[l]}, If[n < 2, 1, If[l[[n]] == 0, b[ReplacePart[l, n -> Sequence[] ]], Sum[If[l[[i]] == 0, 0, Sum[b[Join[Table[l[[t]]-If[t == 1, l[[t]], If[t == i, 1, If[t == j && t == i-j, -2, If[t == j || t == i-j, -1, 0]]]], {t, 1, n}]]], {j, 1, i/2}]], {i, 2, n}]]] ]; g[n_, i_, l_] := If[n == 0 && i == 0, b[l], If[i == 1, b[Prepend[l, n]], Sum[g[n-i*j, i-1, If[l == {} && j == 0, l, Prepend[ l, j]]], {j, 0, n/i}]]] ; a[n_] := g[n, n, {}]; Table[a[n], {n, 1, 27}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
A381634
Number of multisets that can be obtained by taking the sum of each block of a set multipartition (multiset of sets) of the prime indices of n with distinct block-sums.
Original entry on oeis.org
1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 5, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1
The prime indices of 120 are {1,1,2,3}, with 3 ways:
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1},{2},{1,3}}
with block-sums: {1,6}, {3,4}, {1,2,4}, so a(120) = 3.
The prime indices of 210 are {1,2,3,4}, with 12 ways:
{{1,2,3,4}}
{{1},{2,3,4}}
{{2},{1,3,4}}
{{3},{1,2,4}}
{{4},{1,2,3}}
{{1,2},{3,4}}
{{1,3},{2,4}}
{{1},{2},{3,4}}
{{1},{3},{2,4}}
{{1},{4},{2,3}}
{{2},{3},{1,4}}
{{1},{2},{3},{4}}
with block-sums: {10}, {1,9}, {2,8}, {3,7}, {4,6}, {3,7}, {4,6}, {1,2,7}, {1,3,6}, {1,4,5}, {2,3,5}, {1,2,3,4}, of which 10 are distinct, so a(210) = 10.
A003963 gives product of prime indices.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A116540,
A213242,
A213385,
A213427,
A299202,
A300385,
A317142,
A317143,
A318360.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[Union[Sort[hwt/@#]&/@Select[sfacs[n],UnsameQ@@hwt/@#&]]],{n,100}]
Showing 1-10 of 16 results.
Comments