cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A291419 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = 1/(1 - a(0)*x^a(0)/(1 - a(1)*x^a(1)/(1 - a(2)*x^a(2)/(1 - ...)))), a continued fraction.

Original entry on oeis.org

1, 1, 2, 4, 10, 24, 60, 148, 376, 944, 2392, 6032, 15280, 38608, 97728, 247104, 625312, 1581568, 4001680, 10122624, 25610368, 64787520, 163907904, 414654848, 1049031104, 2653873152, 6713958912, 16985280000, 42970438432, 108708830336, 275018076928, 695755635328, 1760162851328
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 23 2017

Keywords

Examples

			G.f. = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 24*x^5 + 60*x^6 + ... = 1/(1 - x/(1 - x/(1 - 2*x^2/(1 - 4*x^4/(1 - 10*x^10/(1 - ...)))))).
		

Crossrefs

A293855 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = 1/(1 - x^a(1) - x^a(2)/(1 - x^a(3) - x^a(4)/(1 - x^a(5) - x^a(6)/(1 - ... )))), a continued fraction.

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 15, 27, 47, 82, 145, 253, 445, 781, 1369, 2405, 4219, 7405, 12998, 22809, 40035, 70263, 123316, 216434, 379854, 666680, 1170079, 2053582, 3604217, 6325695, 11102130, 19485175, 34198108, 60020567, 105341129, 184882533, 324484395
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 17 2017

Keywords

Examples

			G.f. =  1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 15*x^6 + 27*x^7 + 47*x^8 + 82*x^9 + 145*x^10 + ... = 1/(1 - x - x^2/(1 - x^3 - x^5/(1 - x^9 - x^15/(1 - x^27 - x^47/(1 - x^82 - x^145/(1 - ...)))))).
		

Crossrefs

A307543 G.f. A(x) satisfies: A(x) = 1/(1 + (-x)^a(0)/(1 + (-x)^a(1)/(1 + (-x)^a(2)/(1 + (-x)^a(3)/(1 + ...))))), a continued fraction.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 21, 37, 66, 118, 210, 373, 662, 1175, 2087, 3709, 6592, 11714, 20813, 36977, 65695, 116722, 207389, 368486, 654716, 1163271, 2066840, 3672256, 6524693, 11592791, 20597577, 36596883, 65023721, 115531233, 205270716, 364715855, 648010941, 1151357116
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 14 2019

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 12*x^5 + 21*x^6 + 37*x^7 + 66*x^8 + ... = 1/(1 - x/(1 - x/(1 + x^2/(1 + x^4/(1 - x^7/(1 + ...)))))).
		

Crossrefs

Cf. A213411.
Showing 1-3 of 3 results.