A307103 G.f. A(x) satisfies x = A( A(x) + 4*A(x)^2 ).
0, 1, -2, 12, -96, 880, -8720, 90752, -975936, 10737152, -120093056, 1360051456, -15556087296, 179424700416, -2084953411584, 24393551634432, -287204585508864, 3400978267127808, -40480500900446208, 484006813958356992, -5810240353159839744, 70001749695581061120
Offset: 0
Keywords
Examples
G.f. = x - 2*x^2 + 12*x^3 - 96*x^4 + 880*x^5 - 8720*x^6 + 90752*x^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..485
Programs
-
Mathematica
a[ n_] := Module[ {A, x}, A = x; Do[ A += x O[x]^k; A = Normal[A] + x^k ((-4)^(k-1) CatalanNumber[k-1] - SeriesCoefficient[ ComposeSeries[A, A], k])/2, {k, 2, n}]; Coefficient[A, x, n]]; (* Second program *) T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0, 0, If[k==n, 1, 2^(2*n - 2*k-1)*(k/n)*Binomial[2*n-k-1, n-1] - (1/2)*Sum[T[n, n-j-1]*T[n-j-1, k], {j,0,n-k-2}] ]]]; a[n_]:= (-1)^(n+1)*T[n,1]; Table[a[n], {n,0,30}] (* G. C. Greubel, Mar 08 2023 *)
-
PARI
{a(n) = my(A); A = x; for(k=2, n, A += x*O(x^k); A = truncate(A) + x^k * ((-4)^(k-1) * binomial(2*k-2,k-1)/k - polcoeff(subst(A, x, A), k))/2); polcoeff(A, n)};
-
SageMath
@CachedFunction def T(n,k): if (k<0 or k>n): return 0 elif (n==0): return 0 elif (k==n): return 1 else: return 2^(2*n-2*k-1)*(k/(2*n-k))*binomial(2*n-k, n) - (1/2)*sum( T(n, n-j-1)*T(n-j-1, k) for j in range(n-k-1) ) def A307103(n): return (-1)^(n+1)*T(n,1) [A307103(n) for n in range(31)] # G. C. Greubel, Mar 08 2023
Formula
a(n) = (-1)^(n+1) * A213422(n).
Comments