cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307103 G.f. A(x) satisfies x = A( A(x) + 4*A(x)^2 ).

Original entry on oeis.org

0, 1, -2, 12, -96, 880, -8720, 90752, -975936, 10737152, -120093056, 1360051456, -15556087296, 179424700416, -2084953411584, 24393551634432, -287204585508864, 3400978267127808, -40480500900446208, 484006813958356992, -5810240353159839744, 70001749695581061120
Offset: 0

Views

Author

Michael Somos, Mar 24 2019

Keywords

Comments

Composition inverse of A027436.

Examples

			G.f. = x - 2*x^2 + 12*x^3 - 96*x^4 + 880*x^5 - 8720*x^6 + 90752*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := Module[ {A, x}, A = x; Do[ A += x O[x]^k; A = Normal[A] + x^k ((-4)^(k-1) CatalanNumber[k-1] - SeriesCoefficient[ ComposeSeries[A, A], k])/2, {k, 2, n}]; Coefficient[A, x, n]];
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0, 0, If[k==n, 1, 2^(2*n - 2*k-1)*(k/n)*Binomial[2*n-k-1, n-1] - (1/2)*Sum[T[n, n-j-1]*T[n-j-1, k], {j,0,n-k-2}] ]]];
    a[n_]:= (-1)^(n+1)*T[n,1];
    Table[a[n], {n,0,30}] (* G. C. Greubel, Mar 08 2023 *)
  • PARI
    {a(n) = my(A); A = x; for(k=2, n, A += x*O(x^k); A = truncate(A) + x^k * ((-4)^(k-1) * binomial(2*k-2,k-1)/k - polcoeff(subst(A, x, A), k))/2); polcoeff(A, n)};
    
  • SageMath
    @CachedFunction
    def T(n,k):
        if (k<0 or k>n): return 0
        elif (n==0): return 0
        elif (k==n): return 1
        else: return 2^(2*n-2*k-1)*(k/(2*n-k))*binomial(2*n-k, n) - (1/2)*sum( T(n, n-j-1)*T(n-j-1, k) for j in range(n-k-1) )
    def A307103(n): return (-1)^(n+1)*T(n,1)
    [A307103(n) for n in range(31)] # G. C. Greubel, Mar 08 2023

Formula

a(n) = (-1)^(n+1) * A213422(n).

A212280 G.f. A(x)=1/(1-F(x)), where F(F(x)) = (1 - sqrt(1-16*x))/8.

Original entry on oeis.org

1, 1, 3, 17, 131, 1177, 11531, 119201, 1276771, 14015401, 156585211, 1772626673, 20275611347, 233912585849, 2718842818923, 31816917837377, 374657837729987, 4436890509548617
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 14 2013

Keywords

Comments

F(x) is the generating function of A213422.

Crossrefs

Cf. A213422.

Programs

  • Maple
    T := proc(n,m)
        if n = m then
            1 ;
        else
            m*4^(n-m)*binomial(2*n-m-1,n-1)/n ;
            %-add(procname(n,i)*procname(i,m),i=m+1..n-1) ;
            %/2 ;
        end if;
    end proc:
    A212280 := proc(n)
        if n = 0 then
            1
        else
            add(T(n,m),m=1..n) ;
        end if;
    end proc: # R. J. Mathar, Mar 04 2013
  • Mathematica
    Clear[t]; t[n_, m_] := t[n, m] = 1/2*((m*4^(n-m)*Binomial[2*n-m-1, n-1]/n - Sum[ t[n, i]*t[i, m], {i, m+1, n-1}])); t[n_, n_] = 1; a[n_] := Sum[t[n, m], {m, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Feb 25 2013, from formula *)
  • Maxima
    Solve(k):=block([Tmp,i,j],array(Tmp,k,k),for i:0 thru k do for j:0 thru k do Tmp[i,j]:a,
    T(n,m):=if Tmp[n,m]=a then (if n=m then (Tmp[n,n]:1) else (Tmp[n,m]:(1/2*((m*4^(n-m)*binomial(2*n-m-1,n-1))/n-sum(T(n,i)*T(i,m),i,m+1,n-1))))) else Tmp[n,m],  makelist(sum(T(j,i),i,1,j),j,1,k));

Formula

a(n) = sum(m=1..n, T(n,m)) for n>0, where T(n,m)= 1 if n=m, otherwise = (m *4^(n-m) *binomial(2*n-m-1,n-1)/n - sum_{i=m+1..n-1} T(n,i)*T(i,m) )/2.
Showing 1-2 of 2 results.