A291419
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = 1/(1 - a(0)*x^a(0)/(1 - a(1)*x^a(1)/(1 - a(2)*x^a(2)/(1 - ...)))), a continued fraction.
Original entry on oeis.org
1, 1, 2, 4, 10, 24, 60, 148, 376, 944, 2392, 6032, 15280, 38608, 97728, 247104, 625312, 1581568, 4001680, 10122624, 25610368, 64787520, 163907904, 414654848, 1049031104, 2653873152, 6713958912, 16985280000, 42970438432, 108708830336, 275018076928, 695755635328, 1760162851328
Offset: 0
G.f. = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 24*x^5 + 60*x^6 + ... = 1/(1 - x/(1 - x/(1 - 2*x^2/(1 - 4*x^4/(1 - 10*x^10/(1 - ...)))))).
A293854
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = 1/(1 - a(0)*x - a(0)*x^2/(1 - a(1)*x - a(1)*x^2/(1 - a(2)*x - a(2)*x^2/(1 - ... )))), a continued fraction.
Original entry on oeis.org
1, 1, 2, 4, 9, 22, 59, 177, 611, 2516, 12920, 86365, 776624, 9657931, 169092427, 4225447537, 154124945314, 8322768187672, 682155062207265, 87453058120694362, 17875236303587679031, 6127017505201742648325, 3596451909621665099998347
Offset: 0
G.f. = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 22*x^5 + 59*x^6 + ... = 1/(1 - x - x^2/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 4*x - 4*x^2/(1 - 9*x - 9*x^2/(1 - 22*x - 22*x^2/(1 - 59*x - 59*x^2/(1 - ...)))))))).
Showing 1-2 of 2 results.