A213437 Nonlinear recurrence: a(n) = a(n-1) + (a(n-1)+1)*Product_{j=1..n-2} a(j).
1, 3, 7, 31, 703, 459007, 210066847231, 44127887746116242376703, 1947270476915296449559747573381594836628779007
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
Links
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437. [Includes many similar sequences, although not this one.]
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
Programs
-
Maple
A213437 := proc(n) if n = 1 then 1; else procname(n-1)+(1+procname(n-1))*mul(procname(j),j=1..n-2); end if; end proc: # R. J. Mathar, Jul 23 2012
-
Mathematica
RecurrenceTable[{a[n] == a[n-1]+(a[n-1]+1)*(a[n-1]-a[n-2])*a[n-2]/(a[n-2]+1),a[1]==1,a[2]==3},a,{n,1,10}] (* Vaclav Kotesovec, May 06 2015 *)
-
PARI
a=[1];for(n=1,11,a=concat(a, a[n] + (a[n]+1) * prod(k=1,n-1, a[k] )));a \\ - M. F. Hasler, Jul 23 2012
Formula
a(n) = a(n-1)+(a(n-1)+1)*(a(n-1)-a(n-2))*a(n-2)/(a(n-2)+1). - Johan de Ruiter, Jul 23 2012
a(2+3k) = 9007 (mod 10^4) for all k>0. - M. F. Hasler, Jul 23 2012
a(n) ~ c^(2^n), where c = A076949 = 1.2259024435287485386279474959130085213212293209696612823177009... . - Vaclav Kotesovec, May 06 2015
Extensions
Definition recovered by Johan de Ruiter, Jul 23 2012
Comments