A214635 Period of A213437 mod n.
1, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 4, 1, 3, 1, 6, 3, 1, 3, 1, 1, 1, 1, 3, 4, 3, 1, 1, 3, 1, 1, 1, 6, 3, 3, 1, 1, 4, 3, 7, 1, 1, 1, 3, 1, 4, 1, 6, 3, 6, 4, 1, 3, 3, 1, 1, 1, 3, 3, 10, 1, 3, 1, 12, 1, 1, 6, 1, 3, 11, 3, 6, 1, 3, 1, 1, 4, 4, 3, 9, 7, 5, 1, 6, 1, 1, 1, 14, 3, 4, 1, 1, 4, 3, 1, 3, 6, 3
Offset: 1
Keywords
Programs
-
PARI
A214635(n,N=99)={my(a=[Mod(1,n)]); for(n=1,N-1,a=concat(a,a[n]+(a[n]+1)*prod(k=1,n-1,a[k])));for(p=1,N\3,forstep(m=N,p+1,-1,a[m]==a[m-p]&next;3*m>N&next(2);return(p));return(p))} /* the 2nd optional parameter must be taken large enough, at least 3 times the period length and starting position. The script returns zero if the period is not found (probably due to these constraints). */
Formula
Empirically:
A214635(7^n) = (1,6,42,294,...) = 6*7^(n-2) for n>1.
A214635(11^n) = (1,20,220,2420,...) = 20*11^(n-2) for n>1. - M. F. Hasler, Jul 24 2012
Comments