cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213437 Nonlinear recurrence: a(n) = a(n-1) + (a(n-1)+1)*Product_{j=1..n-2} a(j).

Original entry on oeis.org

1, 3, 7, 31, 703, 459007, 210066847231, 44127887746116242376703, 1947270476915296449559747573381594836628779007
Offset: 1

Views

Author

N. J. A. Sloane, Jun 11 2012

Keywords

Comments

This sequence was going to be included in the Aho-Sloane paper, but was omitted from the published version.
It appears that the sequence becomes periodic mod 10^k for any k, with period 3. The last digits are (1,3,7) repeated. Modulo 10^5 the sequence enters the cycle (56703, 79007, 23231) after the first 10 terms. - M. F. Hasler, Jul 23 2012. See also A214635, A214636.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Programs

  • Maple
    A213437 := proc(n)
            if n = 1 then 1;
            else procname(n-1)+(1+procname(n-1))*mul(procname(j),j=1..n-2);
            end if;
    end proc: # R. J. Mathar, Jul 23 2012
  • Mathematica
    RecurrenceTable[{a[n] == a[n-1]+(a[n-1]+1)*(a[n-1]-a[n-2])*a[n-2]/(a[n-2]+1),a[1]==1,a[2]==3},a,{n,1,10}] (* Vaclav Kotesovec, May 06 2015 *)
  • PARI
    a=[1];for(n=1,11,a=concat(a, a[n] + (a[n]+1) * prod(k=1,n-1, a[k] )));a \\ - M. F. Hasler, Jul 23 2012

Formula

a(n) = a(n-1)+(a(n-1)+1)*(a(n-1)-a(n-2))*a(n-2)/(a(n-2)+1). - Johan de Ruiter, Jul 23 2012
a(2+3k) = 9007 (mod 10^4) for all k>0. - M. F. Hasler, Jul 23 2012
a(n) ~ c^(2^n), where c = A076949 = 1.2259024435287485386279474959130085213212293209696612823177009... . - Vaclav Kotesovec, May 06 2015
a(n) = A001699(n)/A001699(n-1); a(n+1) - a(n) = A001699(n) + A001699(n-1); a(n) = A003095(n) + A003095(n-1). - Peter Bala, Feb 03 2017

Extensions

Definition recovered by Johan de Ruiter, Jul 23 2012

A214635 Period of A213437 mod n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 4, 1, 3, 1, 6, 3, 1, 3, 1, 1, 1, 1, 3, 4, 3, 1, 1, 3, 1, 1, 1, 6, 3, 3, 1, 1, 4, 3, 7, 1, 1, 1, 3, 1, 4, 1, 6, 3, 6, 4, 1, 3, 3, 1, 1, 1, 3, 3, 10, 1, 3, 1, 12, 1, 1, 6, 1, 3, 11, 3, 6, 1, 3, 1, 1, 4, 4, 3, 9, 7, 5, 1, 6, 1, 1, 1, 14, 3, 4, 1, 1, 4, 3, 1, 3, 6, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    A214635(n,N=99)={my(a=[Mod(1,n)]); for(n=1,N-1,a=concat(a,a[n]+(a[n]+1)*prod(k=1,n-1,a[k])));for(p=1,N\3,forstep(m=N,p+1,-1,a[m]==a[m-p]&next;3*m>N&next(2);return(p));return(p))} /* the 2nd optional parameter must be taken large enough, at least 3 times the period length and starting position. The script returns zero if the period is not found (probably due to these constraints). */

Formula

Empirically:
A214635(2^n) = 1, A214635(5^n) = A214635(10^n) = 3, for all n>0.
A214635(3^n) = A214635(6^n) = (1, 3, 3, 9, 27, 81, ...) = 3^(n-2) for n>2.
A214635(15^n) = (3,3,3,9,27,81,...) = A214635(3^n) for n>1.
A214635(7^n) = (1,6,42,294,...) = 6*7^(n-2) for n>1.
A214635(11^n) = (1,20,220,2420,...) = 20*11^(n-2) for n>1. - M. F. Hasler, Jul 24 2012
Showing 1-2 of 2 results.