A213441 Number of 2-colored graphs on n labeled nodes.
0, 4, 24, 160, 1440, 18304, 330624, 8488960, 309465600, 16011372544, 1174870185984, 122233833963520, 18023122242478080, 3765668654914699264, 1114515608405262434304, 467221312005126294077440, 277362415313453291571118080, 233150477220213193598856331264, 277465561009648882424932436803584, 467466753447825987214906927108587520
Offset: 1
Examples
a(2) = 4: Denote the vertex coloring by o and *. The 4 labeled graphs on 2 vertices that can be colored using exactly two colors are ....1....2............1....2 ....o....*............*----o ........................... ....1....2............1....2 ....*....o............o----* - _Peter Bala_, Apr 10 2013
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
Links
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. Volume 306, Issues 10-11, 28 May 2006, Pages 905-909.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
- Wikipedia, Graph coloring
Programs
-
Maple
F2:=n->add(binomial(n,r)*2^(r*(n-r)), r=1..n-1); [seq(F2(n),n=1..20)];
-
Mathematica
nn=20;a[x_]:=Sum[x^n/(n!*(2^(n^2/2))),{n,0,nn}];Drop[Table[n!*(2^(n^2/2)),{n,0,nn}]CoefficientList[Series[(a[x]-1)^2,{x,0,nn}],x],1] (* Geoffrey Critzer, Aug 05 2014 *)
-
PARI
a(n) = sum(k=1,n-1, binomial(n,k)*2^(k*(n-k)) ); /* Joerg Arndt, Apr 10 2013 */
Formula
From Peter Bala, Apr 10 2013: (Start)
a(n) = Sum_{k = 1..n-1} binomial(n,k)*2^(k*(n-k)). a(n) = A047863(n) - 2.
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + x^4/(4!*2^6) + .... Then a generating function is (E(x) - 1)^2 = 4*x^2/(2!*2) + 24*x^3/(3!*2^3) + 160*x^4/(4!*2^6) + ....
Sequence is 1/2*(column 2) from A058843. (End)
E.g.f.: Sum_{n>=1}(exp(2^n*x)-1)*x^n/n!. - Geoffrey Critzer, Aug 11 2014
Comments