cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A058843 Triangle T(n,k) = C_n(k) where C_n(k) = number of k-colored labeled graphs with n nodes (n >= 1, 1<=k<=n).

Original entry on oeis.org

1, 1, 2, 1, 12, 8, 1, 80, 192, 64, 1, 720, 5120, 5120, 1024, 1, 9152, 192000, 450560, 245760, 32768, 1, 165312, 10938368, 56197120, 64225280, 22020096, 2097152, 1, 4244480, 976453632, 10877927424, 23781703680, 15971909632, 3758096384
Offset: 1

Views

Author

N. J. A. Sloane, Jan 07 2001

Keywords

Comments

From Peter Bala, Apr 12 2013: (Start)
A coloring of a simple graph G is a choice of color for each graph vertex such that no two vertices sharing the same edge have the same color.
Let E(x) = sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2*2!) + x^3/(2^3*3!) + .... Read has shown that (E(x) - 1)^k is a generating function for labeled graphs on n nodes that can be colored using exactly k colors. Cases include A213441 (k = 2), A213442 (k = 3) and A224068 (k = 4).
In this triangle, colorings of a labeled graph using k colors that differ only by a permutation of the k colors are treated as the same giving 1/k!*(E(x) - 1)^k as a generating function function for the k-th column. (End)

Examples

			Triangle begins:
  1;
  1,    2;
  1,   12,      8;
  1,   80,    192,     64;
  1,  720,   5120,   5120,   1024;
  1, 9152, 192000, 450560, 245760, 32768;
  ...
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.

Crossrefs

Apart from scaling, same as A058875.
Row sums give A240936.

Programs

  • Maple
    for p from 1 to 20 do C[p,1] := 1; od: for k from 2 to 20 do for p from 1 to k-1 do C[p,k] := 0; od: od: for k from 2 to 10 do for p from k to 10 do C[p,k] := add( binomial(p,n)*2^(n*(p-n))*C[n,k-1]/k,n=1..p-1); od: od:
  • Mathematica
    maxn = 8; t[, 1] = 1; t[n, k_] := t[n, k] = Sum[ Binomial[n, j]*2^(j*(n - j))*t[j, k - 1]/k, {j, 1, n - 1}]; Flatten[ Table[t[n, k], {n, 1, maxn}, {k, 1, n}]] (* Jean-François Alcover, Sep 21 2011 *)
  • PARI
    T(n,k)={n!*2^binomial(n,2)*polcoef((sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^k, n)/k!} \\ Andrew Howroyd, Nov 30 2018

Formula

C_n(k) = Sum_{i=1..n-1} binomial(n, i)*2^(i*(n-i))*C_i(k-1)/k.
From Peter Bala, Apr 12 2013: (Start)
Recurrence equation: T(n,k) = sum {i = 1..n-1} binomial(n-1,i)*2^(i*(n-i))*T(i,k-1).
A generating function: exp(x*(E(z) - 1)) = 1 + x*z + (x + 2*x^2)*z^2/(2!*2) + (x + 12*x^2 + 8*x^3)*z^3/(3!*2^3) + .... Cf. A008277 with e.g.f. exp(x*(exp(z) - 1)).
A generating function for column k: 1/k!*(E(x) - 1)^k = sum {n>=k} T(n,k)x^n/(n!*2^C(n,2)).
The row polynomials R(n,x) satisfy the recurrence equation R(n,x) = x*(1 + sum {k = 0..n-1} binomial(n-1,k)*2^(k*(n-k))*R(k,x)) with R(1,x) = x. The row polynomials appear to have only real zeros.
Column 2 = 1/2!*A213441; Column 3 = 1/3!*A213442; Column 4 = 1/4!*A224068. (End)

A000683 Number of colorings of labeled graphs on n nodes using exactly 2 colors, divided by 4.

Original entry on oeis.org

0, 1, 6, 40, 360, 4576, 82656, 2122240, 77366400, 4002843136, 293717546496, 30558458490880, 4505780560619520, 941417163728674816, 278628902101315608576, 116805328001281573519360, 69340603828363322892779520, 58287619305053298399714082816, 69366390252412220606233109200896
Offset: 1

Views

Author

Keywords

Comments

A coloring of a simple graph is a choice of color for each graph vertex such that no two vertices sharing the same edge have the same color. A213441 counts those colorings of labeled graphs on n vertices that use exactly two colors. This sequence is 1/4 of A213441 (1/4 of column 2 of Table 1 in Read). - Peter Bala, Apr 11 2013
A047863 counts colorings of labeled graphs on n vertices that use two or fewer colors. - Peter Bala, Apr 11 2013

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, table 1.5.1, column 2 (divided by 2).
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)=(A047863(n)-2)/4.
A diagonal of A058843.
One quarter of A213441.

Programs

  • Mathematica
    maxn = 16; t[, 1] = 1; t[n, k_] := t[n, k] = Sum[Binomial[n, j]*2^(j*(n - j))*t[j, k - 1]/k, {j, 1, n - 1}]; a[n_] := t[n, 2]/2; Table[a[n], {n, 1, maxn}] (* Jean-François Alcover, Sep 21 2011 *)

Formula

Reference gives generating function.
a(n) ~ c * 2^(n^2/4+n-3/2)/sqrt(Pi*n), where c = Sum_{k = -infinity..infinity} 2^(-k^2) = 2.128936827211877... if n is even and c = Sum_{k = -infinity..infinity} 2^(-(k+1/2)^2) = 2.12893125051302... if n is odd. - Vaclav Kotesovec, Jun 24 2013

Extensions

More terms from Vladeta Jovovic, Feb 02 2000

A213442 Number of 3-colored graphs on n labeled nodes.

Original entry on oeis.org

0, 0, 48, 1152, 30720, 1152000, 65630208, 5858721792, 829548134400, 187058611814400, 67238204562997248, 38521444919968530432, 35161130697930162831360, 51112782500104147115704320, 118291364909478542785766227968, 435713123445085638702895120515072, 2553666760604861879125023961330483200
Offset: 1

Views

Author

N. J. A. Sloane, Jun 12 2012

Keywords

Comments

A191371 counts labeled 3-colored graphs on n vertices, that is, colorings of labeled graphs on n vertices using 3 or fewer colors. This sequence differs in that it counts only those colorings of labeled graphs on n vertices that use exactly three colors. Cf. A213441 and A224068. - Peter Bala, Apr 10 2013

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Programs

  • Maple
    F2:=n->add(binomial(n,r)*2^(r*(n-r)), r=1..n-1);
    F3:=n->add(binomial(n,r)*2^(r*(n-r))*F2(r),r=1..n-1);
    [seq(F3(n),n=1..20)];
  • Mathematica
    Table[Sum[Binomial[n,r]*2^(r*(n-r))*Sum[Binomial[r,s]*2^(s*(r-s)),{s,1,r-1}],{r,1,n-1}],{n,1,20}] (* Vaclav Kotesovec, Jul 23 2013 *)
  • PARI
    seq(n)={Vec(serconvol(sum(j=1, n, x^j*j!*2^binomial(j,2)) + O(x*x^n), (sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^3), -n)} \\ Andrew Howroyd, Nov 30 2018

Formula

Let E(x) = sum {n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + x^4/(4!*2^6) + .... Then a generating function is (E(x) - 1)^3 = 48*x^3/(3!*2^3) + 1152*x^4/(4!*2^6) + 30720*x^5/(5!*2^10) + ... (see Read). - Peter Bala, Apr 10 2013
a(n) = O(2^(n^2/3)*3^n/n). - Vaclav Kotesovec, Jul 23 2013

A058875 Triangle T(n,k) = C_n(k)/2^(k*(k-1)/2) where C_n(k) = number of k-colored labeled graphs with n nodes (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 40, 24, 1, 1, 360, 640, 80, 1, 1, 4576, 24000, 7040, 240, 1, 1, 82656, 1367296, 878080, 62720, 672, 1, 1, 2122240, 122056704, 169967616, 23224320, 487424, 1792, 1, 1, 77366400, 17282252800, 53247344640, 13440516096
Offset: 1

Views

Author

N. J. A. Sloane, Jan 07 2001

Keywords

Comments

From Peter Bala, Apr 12 2013: (Start)
A coloring of a simple graph G is a choice of color for each graph vertex such that no two vertices sharing the same edge have the same color.
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2*2!) + x^3/(2^3*3!) + .... Read has shown that (E(x) - 1)^k is a generating function for labeled graphs on n nodes that can be colored using exactly k colors. Cases include A213441 (k = 2), A213442 (k = 3) and A224068 (k = 4).
If colorings of a graph using k colors are counted as the same if they differ only by a permutation of the colors then a generating function is 1/k!*(E(x) - 1)^k , which is a generating function for the k-th column of A058843. Removing a further factor of 2^C(k,2) gives 1/(k!*2^C(k,2))*(E(x) - 1)^k as a generating function for the k-th column of this triangle. (End)

Examples

			Triangle begins:
  1;
  1,     1;
  1,     6,       1;
  1,    40,      24,      1;
  1,   360,     640,     80,     1;
  1,  4576,   24000,   7040,   240,   1;
  1, 82656, 1367296, 878080, 62720, 672, 1;
  ...
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.

Crossrefs

Apart from scaling, same as A058843.
Columns give A058872 and A000683, A058873 and A006201, A058874 and A006202, also A006218.

Programs

  • Mathematica
    maxn=8; t[,1]=1; t[n,k_]:=t[n,k]=Sum[Binomial[n,j]*2^(j*(n-j))*t[j,k-1]/k,{j,1,n-1}]; Flatten[Table[t[n,k]/2^Binomial[k,2], {n,1,maxn},{k,1,n}]]  (* Geoffrey Critzer, Oct 06 2012, after code from Jean-François Alcover in A058843 *)
  • PARI
    b(n)={n!*2^binomial(n,2)}
    T(n,k)={b(n)*polcoef((sum(j=1, n, x^j/b(j)) + O(x*x^n))^k, n)/b(k)} \\ Andrew Howroyd, Nov 30 2018

Formula

C_n(k) = Sum_{i=1..n-1} binomial(n, i)*2^(i*(n-i))*C_i(k-1)/k.
From Peter Bala, Apr 12 2013: (Start)
Recurrence equation: T(n,k) = 1/2^(k-1)*Sum_{i = 1..n-1} binomial(n-1,i)*2^(i*(n-i))*T(i,k-1).
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + .... Then a generating function for this triangle is E(x*(E(z) - 1)) = 1 + x*z + (x + x^2 )*z^2/(2!*2) + (x + 6*x^2 + x^3)*z^3/(3!*2^3) + (x + 40*x^2 + 24*x^3 + x^4)*z^4/(4!*2^6) + .... Cf. A008277 with e.g.f. exp(x*(exp(z) - 1)).
The row polynomials R(n,x) satisfy the recurrence equation R(n,x) = x*sum {k = 0..n-1} binomial(n-1,k)*2^(k*(n-k))*R(k,x/2) with R(0,x) = 1. The row polynomials appear to have only real zeros.
Column 2 = 1/(2!*2)*A213441; column 3 = 1/(3!*2^3)*A213442; column 4 = 1/(4!*2^6)*A224068. (End)
T(n,k) = A058843(n,k)/2^binomial(k,2). - Andrew Howroyd, Nov 30 2018

A224068 Number of labeled graphs on n vertices that can be colored using exactly 4 colors.

Original entry on oeis.org

0, 0, 0, 1536, 122880, 10813440, 1348730880, 261070258176, 81787921367040, 42364317235937280, 36686317873382031360, 53408511909378681470976, 131046345314766385022238720, 542471805171085602081503969280, 3789399960645715708906355231293440
Offset: 1

Views

Author

Peter Bala, Apr 10 2013

Keywords

Comments

A223887 counts labeled 4-colored graphs on n vertices, that is, colorings of labeled graphs on n vertices using 4 or fewer colors.
This sequence differs in that it counts only those colorings of labeled graphs on n vertices that use exactly 4 colors. Cf. A213441 and A213442.

Crossrefs

Programs

  • Mathematica
    nn=20;e[x_]:=Sum[x^n/(n!*2^Binomial[n,2]),{n,0,nn}];Table[n!*2^Binomial[n,2],{n,0,nn}]CoefficientList[Series[(e[x]-1)^4,{x,0,nn}],x] (* Geoffrey Critzer, Aug 11 2014 *)
  • PARI
    N=16;  x='x+O('x^N);
    E=sum(n=0, N, x^n/(n!*2^binomial(n,2)) );
    tgf=(E-1)^4;
    v=concat([0,0,0], Vec(tgf));
    v=vector(#v, n, v[n] * n! * 2^(n*(n-1)/2) )
    /* Joerg Arndt, Apr 10 2013 */

Formula

a(n) = Sum_{k=2..n-2} C(n,k)*2^(k*(n-k))*A213441(k)*A213441(n-k).
Let E(x) = Sum_{n>=0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + x^4/(4!*2^6) + .... Then a generating function is (E(x) - 1)^4 = 1536*x^4/(4!*2^6) + 122880*x^5/(5!*2^10) + 10813440*x^6/(6!*2^15) + ... + a(n)*x^n/(n!*2^(n*(n-1)/2)) + ... (see Read).

A058872 Number of 2-colored labeled graphs with n nodes.

Original entry on oeis.org

0, 2, 12, 80, 720, 9152, 165312, 4244480, 154732800, 8005686272, 587435092992, 61116916981760, 9011561121239040, 1882834327457349632, 557257804202631217152, 233610656002563147038720, 138681207656726645785559040, 116575238610106596799428165632
Offset: 1

Views

Author

N. J. A. Sloane, Jan 07 2001

Keywords

Comments

A coloring of a simple graph is a choice of color for each graph vertex such that no two vertices sharing the same edge have the same color. A213441 counts those colorings of labeled graphs on n vertices that use exactly two colors. This sequence is 1/2 of A213441 (1/2 of column 2 of Table 1 in Read). - Peter Bala, Apr 11 2013
A047863 counts colorings of labeled graphs on n vertices that use two or fewer colors. - Peter Bala, Apr 11 2013

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
  • A. Mukhopadhyay, Lupanov decoding networks, in A. Mukhopadhyay, ed., Recent Developments in Switching Theory, Ac. Press, 1971, Chap. 3, see esp. p. 82 (number of shell functions).

Crossrefs

A diagonal of A058843.
One half of A213441.

Programs

  • Maple
    A058872 := n->add(binomial(n,k)*2^(n-k)*2^(k*(n-k)),k=0..n-1);
  • Mathematica
    f[list_] := (Apply[Multinomial,list] * 2^((Total[list]^2 - Total[Table[list[[i]]^2, {i, 1, Length[list]}]])/2))/2!; Table[Total[Map[f, Select[Compositions[n,2], Count[#,0]==0&]]], {n, 1, 20}] (* Geoffrey Critzer, Oct 24 2011 *)

A241669 Irregular triangular array read by rows: T(n,k) is the number of 2-colored simple labeled graphs on n nodes that have exactly k edges, 0<=k<=A002620(n), n>=1.

Original entry on oeis.org

0, 2, 2, 6, 12, 6, 14, 48, 60, 32, 6, 30, 160, 360, 440, 310, 120, 20, 62, 480, 1680, 3480, 4680, 4212, 2520, 960, 210, 20, 126, 1344, 6720, 20720, 43680, 66108, 73514, 60480, 36540, 15820, 4662, 840, 70, 254, 3584, 24192, 103040, 308560, 686784, 1172976, 1565888, 1649340, 1373680, 900592, 459312, 178416, 50960, 10080, 1232, 70, 510, 9216, 80640, 451584, 1808352, 5491584, 13102992, 25128720, 39312018, 50638224, 53981928, 47698560, 34869744, 20975472, 10281672, 4044096, 1246644, 290304, 48048, 5040, 252
Offset: 1

Views

Author

Geoffrey Critzer, Aug 08 2014

Keywords

Examples

			Triangle begins:
  0,
  2,  2,
  6,  12,  6,
  14, 48,  60,   32,   6,
  30, 160, 360,  440,  310,  120,  20,
  62, 480, 1680, 3480, 4680, 4212, 2520, 960, 210, 20
		

Crossrefs

Cf. A002620, A213441 (row sums).

Programs

  • Mathematica
    nn=10;f[x_]:=Sum[x^n/(n!*(1+y)^(n^2/2)),{n,0,nn}];CoefficientList[Table[n!*(1+y)^(n^2/2),{n,0,nn}]CoefficientList[Series[(f[x]-1)^2,{x,0,nn}],x]//Simplify//Expand,y]//Grid

Formula

E.g.f.: Sum_{n>=1} (exp(1 + y)^n*x - 1)*x^n/n!.
Showing 1-7 of 7 results.