A058843
Triangle T(n,k) = C_n(k) where C_n(k) = number of k-colored labeled graphs with n nodes (n >= 1, 1<=k<=n).
Original entry on oeis.org
1, 1, 2, 1, 12, 8, 1, 80, 192, 64, 1, 720, 5120, 5120, 1024, 1, 9152, 192000, 450560, 245760, 32768, 1, 165312, 10938368, 56197120, 64225280, 22020096, 2097152, 1, 4244480, 976453632, 10877927424, 23781703680, 15971909632, 3758096384
Offset: 1
Triangle begins:
1;
1, 2;
1, 12, 8;
1, 80, 192, 64;
1, 720, 5120, 5120, 1024;
1, 9152, 192000, 450560, 245760, 32768;
...
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
Apart from scaling, same as
A058875.
-
for p from 1 to 20 do C[p,1] := 1; od: for k from 2 to 20 do for p from 1 to k-1 do C[p,k] := 0; od: od: for k from 2 to 10 do for p from k to 10 do C[p,k] := add( binomial(p,n)*2^(n*(p-n))*C[n,k-1]/k,n=1..p-1); od: od:
-
maxn = 8; t[, 1] = 1; t[n, k_] := t[n, k] = Sum[ Binomial[n, j]*2^(j*(n - j))*t[j, k - 1]/k, {j, 1, n - 1}]; Flatten[ Table[t[n, k], {n, 1, maxn}, {k, 1, n}]] (* Jean-François Alcover, Sep 21 2011 *)
-
T(n,k)={n!*2^binomial(n,2)*polcoef((sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^k, n)/k!} \\ Andrew Howroyd, Nov 30 2018
A223887
Number of 4-colored labeled graphs on n vertices.
Original entry on oeis.org
1, 4, 28, 340, 7108, 254404, 15531268, 1613235460, 284556079108, 85107970698244, 43112647751430148, 36955277740855136260, 53562598422461559373828, 131186989945696839128432644, 542676256323680030599454982148
Offset: 0
a(2) = 28: There are two labeled 4-colorable graphs on 2 nodes, namely
A) 1 2 B) 1 2
o o o----o
Using 4 colors there are 16 ways to color the graph of type A and 4*3 = 12 ways to color the graph of type B so that adjacent vertices do not share the same color. Thus there are in total 28 labeled 4-colored graphs on 2 vertices.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973.
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Steven R. Finch, Bipartite, k-colorable and k-colored graphs
- Steven R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. 5 (1973), 171-178. North Holland Publishing Company.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
-
N=66; x='x+O('x^N);
E=sum(n=0, N, x^n/(n!*2^binomial(n,2)) );
tgf=E^4; v=concat(Vec(tgf));
v=vector(#v, n, v[n] * (n-1)! * 2^((n-1)*(n-2)/2) )
/* Joerg Arndt, Apr 10 2013 */
A213442
Number of 3-colored graphs on n labeled nodes.
Original entry on oeis.org
0, 0, 48, 1152, 30720, 1152000, 65630208, 5858721792, 829548134400, 187058611814400, 67238204562997248, 38521444919968530432, 35161130697930162831360, 51112782500104147115704320, 118291364909478542785766227968, 435713123445085638702895120515072, 2553666760604861879125023961330483200
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..75
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. 5 (1973), 171-178. North Holland Publishing Company.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
- Wikipedia, Graph coloring
-
F2:=n->add(binomial(n,r)*2^(r*(n-r)), r=1..n-1);
F3:=n->add(binomial(n,r)*2^(r*(n-r))*F2(r),r=1..n-1);
[seq(F3(n),n=1..20)];
-
Table[Sum[Binomial[n,r]*2^(r*(n-r))*Sum[Binomial[r,s]*2^(s*(r-s)),{s,1,r-1}],{r,1,n-1}],{n,1,20}] (* Vaclav Kotesovec, Jul 23 2013 *)
-
seq(n)={Vec(serconvol(sum(j=1, n, x^j*j!*2^binomial(j,2)) + O(x*x^n), (sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^3), -n)} \\ Andrew Howroyd, Nov 30 2018
A213441
Number of 2-colored graphs on n labeled nodes.
Original entry on oeis.org
0, 4, 24, 160, 1440, 18304, 330624, 8488960, 309465600, 16011372544, 1174870185984, 122233833963520, 18023122242478080, 3765668654914699264, 1114515608405262434304, 467221312005126294077440, 277362415313453291571118080, 233150477220213193598856331264, 277465561009648882424932436803584, 467466753447825987214906927108587520
Offset: 1
a(2) = 4: Denote the vertex coloring by o and *. The 4 labeled graphs on 2 vertices that can be colored using exactly two colors are
....1....2............1....2
....o....*............*----o
...........................
....1....2............1....2
....*....o............o----*
- _Peter Bala_, Apr 10 2013
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. Volume 306, Issues 10-11, 28 May 2006, Pages 905-909.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
- Wikipedia, Graph coloring
-
F2:=n->add(binomial(n,r)*2^(r*(n-r)), r=1..n-1);
[seq(F2(n),n=1..20)];
-
nn=20;a[x_]:=Sum[x^n/(n!*(2^(n^2/2))),{n,0,nn}];Drop[Table[n!*(2^(n^2/2)),{n,0,nn}]CoefficientList[Series[(a[x]-1)^2,{x,0,nn}],x],1] (* Geoffrey Critzer, Aug 05 2014 *)
-
a(n) = sum(k=1,n-1, binomial(n,k)*2^(k*(n-k)) ); /* Joerg Arndt, Apr 10 2013 */
A006202
Number of colorings of labeled graphs on n nodes using exactly 4 colors, divided by 4!*2^6.
Original entry on oeis.org
0, 0, 0, 1, 80, 7040, 878080, 169967616, 53247344640, 27580935700480, 23884321532149760, 34771166607668412416, 85316631064301031915520, 353171748158258855521812480, 2467057266045387831319241687040, 29078599995993904385498084987109376
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, col. 4 of Table 1.5.1 (divided by 64).
- R. C. Read, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
maxn = 16;
t[, 1] = 1; t[n, k_] := t[n, k] = Sum[Binomial[n, j]*2^(j*(n - j))*t[j, k - 1]/k, {j, 1, n - 1}];
a[n_] := t[n, 4]/64;
Array[a, maxn]
-
seq(n)={Vec(serconvol(sum(j=1, n, x^j*j!*2^binomial(j,2)) + O(x*x^n), (sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^4)/1536, -n)} \\ Andrew Howroyd, Nov 30 2018
A058875
Triangle T(n,k) = C_n(k)/2^(k*(k-1)/2) where C_n(k) = number of k-colored labeled graphs with n nodes (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 40, 24, 1, 1, 360, 640, 80, 1, 1, 4576, 24000, 7040, 240, 1, 1, 82656, 1367296, 878080, 62720, 672, 1, 1, 2122240, 122056704, 169967616, 23224320, 487424, 1792, 1, 1, 77366400, 17282252800, 53247344640, 13440516096
Offset: 1
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 40, 24, 1;
1, 360, 640, 80, 1;
1, 4576, 24000, 7040, 240, 1;
1, 82656, 1367296, 878080, 62720, 672, 1;
...
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Steven R. Finch, Bipartite, k-colorable and k-colored graphs
- Steven R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
Apart from scaling, same as
A058843.
-
maxn=8; t[,1]=1; t[n,k_]:=t[n,k]=Sum[Binomial[n,j]*2^(j*(n-j))*t[j,k-1]/k,{j,1,n-1}]; Flatten[Table[t[n,k]/2^Binomial[k,2], {n,1,maxn},{k,1,n}]] (* Geoffrey Critzer, Oct 06 2012, after code from Jean-François Alcover in A058843 *)
-
b(n)={n!*2^binomial(n,2)}
T(n,k)={b(n)*polcoef((sum(j=1, n, x^j/b(j)) + O(x*x^n))^k, n)/b(k)} \\ Andrew Howroyd, Nov 30 2018
Showing 1-6 of 6 results.
Comments