A058843
Triangle T(n,k) = C_n(k) where C_n(k) = number of k-colored labeled graphs with n nodes (n >= 1, 1<=k<=n).
Original entry on oeis.org
1, 1, 2, 1, 12, 8, 1, 80, 192, 64, 1, 720, 5120, 5120, 1024, 1, 9152, 192000, 450560, 245760, 32768, 1, 165312, 10938368, 56197120, 64225280, 22020096, 2097152, 1, 4244480, 976453632, 10877927424, 23781703680, 15971909632, 3758096384
Offset: 1
Triangle begins:
1;
1, 2;
1, 12, 8;
1, 80, 192, 64;
1, 720, 5120, 5120, 1024;
1, 9152, 192000, 450560, 245760, 32768;
...
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
Apart from scaling, same as
A058875.
-
for p from 1 to 20 do C[p,1] := 1; od: for k from 2 to 20 do for p from 1 to k-1 do C[p,k] := 0; od: od: for k from 2 to 10 do for p from k to 10 do C[p,k] := add( binomial(p,n)*2^(n*(p-n))*C[n,k-1]/k,n=1..p-1); od: od:
-
maxn = 8; t[, 1] = 1; t[n, k_] := t[n, k] = Sum[ Binomial[n, j]*2^(j*(n - j))*t[j, k - 1]/k, {j, 1, n - 1}]; Flatten[ Table[t[n, k], {n, 1, maxn}, {k, 1, n}]] (* Jean-François Alcover, Sep 21 2011 *)
-
T(n,k)={n!*2^binomial(n,2)*polcoef((sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^k, n)/k!} \\ Andrew Howroyd, Nov 30 2018
A191371
Number of simple labeled graphs with (at most) 3-colored nodes such that no edge connects two nodes of the same color.
Original entry on oeis.org
1, 3, 15, 123, 1635, 35043, 1206915, 66622083, 5884188675, 830476531203, 187106645932035, 67241729173555203, 38521811621470420995, 35161184767296890265603, 51112793797110111859802115, 118291368253025368001553530883, 435713124846749574718274002747395, 2553666761436949125065383836043837443
Offset: 0
a(2) = 15: There are two labeled 3-colorable graphs on 2 nodes, namely
A) 1 2 B) 1 2
o o o----o
Using 3 colors there are 9 ways to color the graph of type A and 3*2 = 6 ways to color the graph of type B so that adjacent vertices do not share the same color. Thus there are in total 15 labeled 3-colored graphs on 2 vertices.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, 16-18.
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Steven R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. 5 (1973), 171-178. North Holland Publishing Company.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
-
f[{k_,r_,m_}]:= Binomial[m+r+k,k] Binomial[m+r,r] 2^ (k r + k m + r m); Table[Total[Map[f,Compositions[n,3]]],{n,0,20}]
-
seq(n)={my(p=(sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n))^3); Vecrev(sum(j=0, n, j!*2^binomial(j,2)*polcoef(p,j)*x^j))} \\ Andrew Howroyd, Dec 03 2018
-
from sympy import binomial
def a047863(n): return sum([binomial(n, k)*2**(k*(n - k)) for k in range(n + 1)])
def a(n): return sum([binomial(n, k)*2**(k*(n - k))*a047863(k) for k in range(n + 1)]) # Indranil Ghosh, Jun 03 2017
A213441
Number of 2-colored graphs on n labeled nodes.
Original entry on oeis.org
0, 4, 24, 160, 1440, 18304, 330624, 8488960, 309465600, 16011372544, 1174870185984, 122233833963520, 18023122242478080, 3765668654914699264, 1114515608405262434304, 467221312005126294077440, 277362415313453291571118080, 233150477220213193598856331264, 277465561009648882424932436803584, 467466753447825987214906927108587520
Offset: 1
a(2) = 4: Denote the vertex coloring by o and *. The 4 labeled graphs on 2 vertices that can be colored using exactly two colors are
....1....2............1....2
....o....*............*----o
...........................
....1....2............1....2
....*....o............o----*
- _Peter Bala_, Apr 10 2013
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. Volume 306, Issues 10-11, 28 May 2006, Pages 905-909.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
- Wikipedia, Graph coloring
-
F2:=n->add(binomial(n,r)*2^(r*(n-r)), r=1..n-1);
[seq(F2(n),n=1..20)];
-
nn=20;a[x_]:=Sum[x^n/(n!*(2^(n^2/2))),{n,0,nn}];Drop[Table[n!*(2^(n^2/2)),{n,0,nn}]CoefficientList[Series[(a[x]-1)^2,{x,0,nn}],x],1] (* Geoffrey Critzer, Aug 05 2014 *)
-
a(n) = sum(k=1,n-1, binomial(n,k)*2^(k*(n-k)) ); /* Joerg Arndt, Apr 10 2013 */
A058875
Triangle T(n,k) = C_n(k)/2^(k*(k-1)/2) where C_n(k) = number of k-colored labeled graphs with n nodes (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 40, 24, 1, 1, 360, 640, 80, 1, 1, 4576, 24000, 7040, 240, 1, 1, 82656, 1367296, 878080, 62720, 672, 1, 1, 2122240, 122056704, 169967616, 23224320, 487424, 1792, 1, 1, 77366400, 17282252800, 53247344640, 13440516096
Offset: 1
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 40, 24, 1;
1, 360, 640, 80, 1;
1, 4576, 24000, 7040, 240, 1;
1, 82656, 1367296, 878080, 62720, 672, 1;
...
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Steven R. Finch, Bipartite, k-colorable and k-colored graphs
- Steven R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
Apart from scaling, same as
A058843.
-
maxn=8; t[,1]=1; t[n,k_]:=t[n,k]=Sum[Binomial[n,j]*2^(j*(n-j))*t[j,k-1]/k,{j,1,n-1}]; Flatten[Table[t[n,k]/2^Binomial[k,2], {n,1,maxn},{k,1,n}]] (* Geoffrey Critzer, Oct 06 2012, after code from Jean-François Alcover in A058843 *)
-
b(n)={n!*2^binomial(n,2)}
T(n,k)={b(n)*polcoef((sum(j=1, n, x^j/b(j)) + O(x*x^n))^k, n)/b(k)} \\ Andrew Howroyd, Nov 30 2018
A224068
Number of labeled graphs on n vertices that can be colored using exactly 4 colors.
Original entry on oeis.org
0, 0, 0, 1536, 122880, 10813440, 1348730880, 261070258176, 81787921367040, 42364317235937280, 36686317873382031360, 53408511909378681470976, 131046345314766385022238720, 542471805171085602081503969280, 3789399960645715708906355231293440
Offset: 1
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math., Volume 306, Issues 10-11, 28 May 2006, Pages 905-909.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
- Wikipedia, Graph coloring
-
nn=20;e[x_]:=Sum[x^n/(n!*2^Binomial[n,2]),{n,0,nn}];Table[n!*2^Binomial[n,2],{n,0,nn}]CoefficientList[Series[(e[x]-1)^4,{x,0,nn}],x] (* Geoffrey Critzer, Aug 11 2014 *)
-
N=16; x='x+O('x^N);
E=sum(n=0, N, x^n/(n!*2^binomial(n,2)) );
tgf=(E-1)^4;
v=concat([0,0,0], Vec(tgf));
v=vector(#v, n, v[n] * n! * 2^(n*(n-1)/2) )
/* Joerg Arndt, Apr 10 2013 */
A006201
Number of colorings of labeled graphs on n nodes using exactly 3 colors, divided by 48.
Original entry on oeis.org
0, 0, 1, 24, 640, 24000, 1367296, 122056704, 17282252800, 3897054412800, 1400795928395776, 802530102499344384, 732523556206878392320, 1064849635418836398243840, 2464403435614136308036796416
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, table 1.5.1, column 3 (divided by 8).
- R. C. Read, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
F2[n_] := Sum[Binomial[n, r]*2^(r*(n-r)), {r, 1, n-1}]; F3[n_] := Sum[Binomial[n, r]*2^(r*(n-r))*F2[r], {r, 1, n-1}]; a[n_] := F3[n]/48; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Mar 06 2014, after Maple code in A213442 *)
-
seq(n)={Vec(serconvol(sum(j=1, n, x^j*j!*2^binomial(j,2)) + O(x*x^n), (sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^3)/48, -n)} \\ Andrew Howroyd, Nov 30 2018
A058873
Number of 3-colored labeled graphs with n nodes.
Original entry on oeis.org
0, 0, 8, 192, 5120, 192000, 10938368, 976453632, 138258022400, 31176435302400, 11206367427166208, 6420240819994755072, 5860188449655027138560, 8518797083350691185950720, 19715227484913090464294371328, 72618853907514273117149186752512
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
-
E:= Sum(x^n/(n!*2^(n*(n-1)/2)),n=1..infinity):
G:= 1/6*E^3:
S:= series(G,x,21):
seq(coeff(S,x,n)*n!*2^(n*(n-1)/2),n=1..20); # Robert Israel, Aug 01 2018
-
f[list_] := (Apply[Multinomial, list] * 2^((Total[list]^2-Total[Table[list[[i]]^2, {i, 1, Length[list]}]])/2))/3!; Table[Total[Map[f, Select[Compositions[n, 3], Count[#, 0]==0&]]], {n, 1, 20}] (* Geoffrey Critzer, Oct 24 2011 *)
-
N=66; x='x+O('x^N);
E=sum(n=0, N, x^n/(n!*2^binomial(n,2)) );
tgf=(E-1)^3/6; v=concat([0,0], Vec(tgf));
v=vector(#v, n, v[n] * n! * 2^(n*(n-1)/2) )
/* Joerg Arndt, Apr 14 2013 */
Showing 1-7 of 7 results.
Comments