A212959
Number of (w,x,y) such that w,x,y are all in {0,...,n} and |w-x| = |x-y|.
Original entry on oeis.org
1, 4, 11, 20, 33, 48, 67, 88, 113, 140, 171, 204, 241, 280, 323, 368, 417, 468, 523, 580, 641, 704, 771, 840, 913, 988, 1067, 1148, 1233, 1320, 1411, 1504, 1601, 1700, 1803, 1908, 2017, 2128, 2243, 2360, 2481, 2604, 2731, 2860, 2993, 3128, 3267
Offset: 0
a(1)=4 counts these (x,y,z): (0,0,0), (1,1,1), (0,1,0), (1,0,1).
Numbers congruent to {1, 3} mod 6: 1, 3, 7, 9, 13, 15, 19, ...
a(0) = 1;
a(1) = 1 + 3 = 4;
a(2) = 1 + 3 + 7 = 11;
a(3) = 1 + 3 + 7 + 9 = 20;
a(4) = 1 + 3 + 7 + 9 + 13 = 33;
a(5) = 1 + 3 + 7 + 9 + 13 + 15 = 48; etc. - _Philippe Deléham_, Mar 16 2014
- A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
- P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[w - x] == Abs[x - y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 50]] (* A212959 *)
-
a(n)=(6*n^2+8*n+3)\/4 \\ Charles R Greathouse IV, Jul 28 2015
A213482
Number of (w,x,y) with all terms in {0,...,n} and |w-x| + |x-y| > w+x+y.
Original entry on oeis.org
0, 3, 14, 41, 87, 161, 265, 409, 594, 831, 1120, 1473, 1889, 2381, 2947, 3601, 4340, 5179, 6114, 7161, 8315, 9593, 10989, 12521, 14182, 15991, 17940, 20049, 22309, 24741, 27335, 30113, 33064, 36211, 39542, 43081, 46815, 50769, 54929
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w + x + y > Abs[w - x] + Abs[x - y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
Map[t[#] &, Range[0, 60]] (* A213482 *)
A213480
Number of (w,x,y) with all terms in {0,...,n} and |w-x| + |x-y| != w+x+y.
Original entry on oeis.org
0, 4, 16, 46, 95, 175, 285, 439, 634, 886, 1190, 1564, 2001, 2521, 3115, 3805, 4580, 5464, 6444, 7546, 8755, 10099, 11561, 13171, 14910, 16810, 18850, 21064, 23429, 25981, 28695, 31609, 34696, 37996, 41480, 45190, 49095, 53239, 57589
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w + x + y != Abs[w - x] + Abs[x - y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
Map[t[#] &, Range[0, 60]] (* A213480 *)
A213481
Number of triples (w,x,y) with all terms in {0,...,n} and |w-x| + |x-y| <= w+x+y.
Original entry on oeis.org
1, 7, 25, 59, 117, 202, 323, 482, 689, 945, 1261, 1637, 2085, 2604, 3207, 3892, 4673, 5547, 6529, 7615, 8821, 10142, 11595, 13174, 14897, 16757, 18773, 20937, 23269, 25760, 28431, 31272, 34305, 37519, 40937, 44547, 48373, 52402, 56659
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w + x + y >= Abs[w - x] + Abs[x - y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
Map[t[#] &, Range[0, 60]] (* A213481 *)
A213483
Number of (w,x,y) with all terms in {0,...,n} and |w-x| + |x-y| >= w+x+y.
Original entry on oeis.org
1, 5, 13, 23, 38, 55, 78, 103, 135, 169, 211, 255, 308, 363, 428, 495, 573, 653, 745, 839, 946, 1055, 1178, 1303, 1443, 1585, 1743, 1903, 2080, 2259, 2456, 2655, 2873, 3093, 3333, 3575, 3838, 4103, 4390, 4679, 4991, 5305, 5643, 5983, 6348
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w + x + y <= Abs[w - x] + Abs[x - y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
Map[t[#] &, Range[0, 60]] (* A213483 *)
LinearRecurrence[{2,1,-4,1,2,-1},{1,5,13,23,38,55},50] (* Harvey P. Dale, Sep 11 2019 *)
Showing 1-5 of 5 results.
Comments