cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213506 Number of nonisomorphic 2-generator p-groups of class at most 2 and order p^n.

Original entry on oeis.org

1, 1, 2, 4, 6, 8, 13, 17, 23, 31, 40, 50, 65, 79, 97, 119, 143, 169, 203, 237, 277, 323, 373, 427, 492, 558, 633, 717, 807, 903, 1014, 1128, 1254, 1392, 1539, 1695, 1870, 2050, 2246, 2458, 2682, 2918, 3178, 3446, 3734, 4042, 4366, 4706, 5075, 5455, 5860
Offset: 0

Views

Author

Arturo Magidin, Jun 12 2012

Keywords

Programs

  • Maple
    A213506 := proc(n)
            a := 0 ;
            for t from 0 to n do
                    for s from t to n-t do
                            r := n-s-t ;
                            if r >= s then
                                    m := min(t,r-s) ;
                                    a := a+t+1+m*(2*t+1-m)/2 ;
                            end if;
                    end do:
            end do:
            return a;
    end proc:
    seq(A213506(n),n=0..70) ; # R. J. Mathar, Jun 26 2012
  • Mathematica
    CoefficientList[Series[1/((1 - x)*(1 - x^2)*(1 - x^3)^2*(1 - x^4)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 28 2014 *)
  • PARI
    a(n)=floor((n^4+26*n^3+234*n^2+(909-64*(n%3))*n+1701)/1728+(n+1)*(-1)^n/64) \\ Tani Akinari, Jun 28 2014
    
  • PARI
    Vec( 1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)) + O(x^100)) \\ Michel Marcus, Jun 28 2014

Formula

a(n) = Sum_{r+s+t=n, r >= s >= t >= 0}( (t+1)+(1/2)*min{t,r-s}*(2*t+1-min{t,r-s}) ).
G.f.: 1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)). - Tani Akinari, Jun 28 2014
a(n) = floor( (n^4+26*n^3+234*n^2+(909-64*(n mod 3))*n+1701)/1728+(n+1)*(-1)^n/64 ). [Tani Akinari, Jun 28 2014 - see PARI code]