A213574 Principal diagonal of the convolution array A213573.
1, 17, 93, 349, 1093, 3093, 8221, 20957, 51861, 125509, 298477, 699789, 1621285, 3718325, 8453181, 19069885, 42728245, 95156901, 210762253, 464517485, 1019214021, 2227173397, 4848613213, 10519312029, 22749902293, 49056576773, 105495131181, 226291086157
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-33,63,-66,36,-8).
Programs
-
GAP
List([1..30], n-> 2^n*(3+2*n+n^2) - (3+4*n+4*n^2)); # G. C. Greubel, Jul 25 2019
-
Magma
[2^n*(3+2*n+n^2) - (3+4*n+4*n^2): n in [1..30]]; // G. C. Greubel, Jul 25 2019
-
Mathematica
(* First program *) b[n_]:= 2^(n-1); c[n_]:= n; t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]] r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213568 *) d = Table[t[n, n], {n, 1, 40}] (* A213569 *) s[n_]:= Sum[t[i, n+1-i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A047520 *) (* Additional programs *) LinearRecurrence[{9,-33,63,-66,36,-8},{1,17,93,349,1093,3093},30] (* Harvey P. Dale, Jun 25 2014 *) Rest[CoefficientList[Series[x(1+8x-27x^2+10x^3+16x^4)/(1-3x+2x^2)^3, {x, 0, 30}], x]] (* Vincenzo Librandi, Jun 26 2014 *)
-
PARI
Vec(x*(1+8*x-27*x^2+10*x^3+16*x^4)/((1-x)^3*(1-2*x)^3) + O(x^30)) \\ Colin Barker, Oct 30 2017
-
PARI
vector(30, n, 2^n*(3+2*n+n^2) - (3+4*n+4*n^2)) \\ G. C. Greubel, Jul 25 2019
-
Sage
[2^n*(3+2*n+n^2) - (3+4*n+4*n^2) for n in (1..30)] # G. C. Greubel, Jul 25 2019
Formula
a(n) = 9*a(n-1) - 33*a(n-2) + 63*a(n-3) - 66*a(n-4) + 36*a(n-5) - 8*a(n-6).
G.f.: x*(1 + 8*x - 27*x^2 + 10*x^3 + 16*x^4)/(1 - 3*x + 2*x^2)^3.
a(n) = 2^n*(3+2*n+n^2) - (3+4*n+4*n^2). - Colin Barker, Oct 30 2017
E.g.f.: (3+6*x+4*x^2)*exp(2*x) - (3+8*x+4*x^2)*exp(x). - G. C. Greubel, Jul 25 2019