cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213578 Antidiagonal sums of the convolution array A213576.

Original entry on oeis.org

1, 4, 13, 34, 80, 174, 359, 712, 1371, 2580, 4768, 8684, 15629, 27852, 49225, 86390, 150704, 261530, 451795, 777360, 1332791, 2277864, 3882048, 6599064, 11191705, 18940564, 31992709, 53943562, 90807056, 152631750, 256190783
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2012

Keywords

Crossrefs

Programs

  • GAP
    List([1..40], n-> n*Fibonacci(n+4)-2*(Fibonacci(n+5)-n-5)); # G. C. Greubel, Jul 05 2019
  • Magma
    [n*Fibonacci(n+4)-2*(Fibonacci(n+5)-n-5): n in [1..40]]; // Vincenzo Librandi, Jul 05 2019
    
  • Mathematica
    b[n_]:= n; c[n_]:= Fibonacci[n];
    t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213576 *)
    r[n_] := Table[t[n, k], {k,40}]  (* columns of antidiagonal triangle *)
    d = Table[t[n, n], {n,1,40}] (* A213577 *)
    s[n_] := Sum[t[i, n+1-i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A213578 *)
    (* alternate program *)
    LinearRecurrence[{4,-4,-2,4,0,-1},{1,4,13,34,80,174},40] (* Harvey P. Dale, Jul 04 2019 *)
  • PARI
    vector(40, n, n*fibonacci(n+4)-2*(fibonacci(n+5)-n-5)) \\ G. C. Greubel, Jul 05 2019
    
  • Sage
    [n*Fibonacci(n+4)-2*(Fibonacci(n+5)-n-5) for n in (1..40)] # G. C. Greubel, Jul 05 2019
    

Formula

a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) - a(n-6).
G.f.: (1 + x^2)/(1 - 2*x + x^3)^2.
a(n) = n*F(n+4) - 2*(F(n+5) - n - 5), F = A000045. - Ehren Metcalfe, Jul 05 2019