A213578 Antidiagonal sums of the convolution array A213576.
1, 4, 13, 34, 80, 174, 359, 712, 1371, 2580, 4768, 8684, 15629, 27852, 49225, 86390, 150704, 261530, 451795, 777360, 1332791, 2277864, 3882048, 6599064, 11191705, 18940564, 31992709, 53943562, 90807056, 152631750, 256190783
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (4,-4,-2,4,0,-1).
Programs
-
GAP
List([1..40], n-> n*Fibonacci(n+4)-2*(Fibonacci(n+5)-n-5)); # G. C. Greubel, Jul 05 2019
-
Magma
[n*Fibonacci(n+4)-2*(Fibonacci(n+5)-n-5): n in [1..40]]; // Vincenzo Librandi, Jul 05 2019
-
Mathematica
b[n_]:= n; c[n_]:= Fibonacci[n]; t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213576 *) r[n_] := Table[t[n, k], {k,40}] (* columns of antidiagonal triangle *) d = Table[t[n, n], {n,1,40}] (* A213577 *) s[n_] := Sum[t[i, n+1-i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A213578 *) (* alternate program *) LinearRecurrence[{4,-4,-2,4,0,-1},{1,4,13,34,80,174},40] (* Harvey P. Dale, Jul 04 2019 *)
-
PARI
vector(40, n, n*fibonacci(n+4)-2*(fibonacci(n+5)-n-5)) \\ G. C. Greubel, Jul 05 2019
-
Sage
[n*Fibonacci(n+4)-2*(Fibonacci(n+5)-n-5) for n in (1..40)] # G. C. Greubel, Jul 05 2019
Formula
a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) - a(n-6).
G.f.: (1 + x^2)/(1 - 2*x + x^3)^2.
a(n) = n*F(n+4) - 2*(F(n+5) - n - 5), F = A000045. - Ehren Metcalfe, Jul 05 2019