cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213615 Triangle read by rows, coefficients of the Bernoulli polynomials B_{n}(x) times A144845(n) in descending order of powers.

Original entry on oeis.org

1, 2, -1, 6, -6, 1, 2, -3, 1, 0, 30, -60, 30, 0, -1, 6, -15, 10, 0, -1, 0, 42, -126, 105, 0, -21, 0, 1, 6, -21, 21, 0, -7, 0, 1, 0, 30, -120, 140, 0, -70, 0, 20, 0, -1, 10, -45, 60, 0, -42, 0, 20, 0, -3, 0, 66, -330, 495, 0, -462, 0, 330, 0, -99, 0, 5, 6, -33
Offset: 0

Views

Author

Peter Luschny, Jun 16 2012

Keywords

Examples

			b(0,x) =  1
b(1,x) =  2*x    -  1
b(2,x) =  6*x^2  -  6*x    + 1
b(3,x) =  2*x^3  -  3*x^2  + x
b(4,x) = 30*x^4  - 60*x^3  + 30*x^2  - 1
b(5,x) =  6*x^5  - 15*x^4  + 10*x^3  - x
		

Crossrefs

Programs

  • Maple
    seq(seq(coeff(denom(bernoulli(i,x))*bernoulli(i,x),x,i-j),j=0..i),i=0..12);
  • Mathematica
    Flatten[Table[p = Reverse[CoefficientList[BernoulliB[n, x], x]]; (LCM @@ Denominator[p])*p, {n, 0, 10}]] (* T. D. Noe, Nov 07 2012 *)

Formula

T(n,k) = A144845(n)*[x^(n-k)]B{n}(x).