A213650 Numbers k such that the sum of the first k primes is semiprime.
3, 7, 8, 10, 16, 18, 22, 28, 32, 34, 36, 38, 44, 46, 48, 54, 55, 58, 59, 65, 66, 72, 75, 82, 92, 93, 94, 104, 106, 110, 118, 120, 133, 136, 137, 138, 140, 141, 142, 144, 148, 150, 154, 156, 164, 168, 170, 174, 190, 194, 202, 210, 212, 218, 224, 226, 232, 234
Offset: 1
Keywords
Examples
8 is in the sequence because the sum of the first 8 primes is 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 = 77 = 7*11, which is semiprime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
with(numtheory): for n from 1 to 500 do:s:=sum(‘ithprime(k)’, ’k’=1..n):if bigomega(s)=2 then printf(`%d, `, n):else fi:od:
-
Mathematica
Flatten[Position[Accumulate[Prime[Range[300]]],_?(PrimeOmega[#]==2&)]]
-
PARI
isok(n) = bigomega(vecsum(primes(n))) == 2; \\ Michel Marcus, Sep 18 2017
Comments