A213734 Primes in A213650.
3, 7, 59, 137, 277, 313, 499, 563, 619, 719, 787, 797, 919, 937, 971, 1013, 1217, 1283, 1373, 1409, 1439, 1451, 1621, 1747, 1789, 2207, 2237, 2267, 2393, 2417, 2441, 2591, 2707, 2797, 2801, 2939, 2999, 3251, 3529, 3769, 3847, 4201, 4441, 4447, 4597, 4643, 4721
Offset: 1
Keywords
Examples
7 is in the sequence because the sum of the first 7 primes is 2 + 3 + 5 + 7 + 11 + 13 + 17 = 58 = 2*29, which is semiprime.
Crossrefs
Cf. A213650.
Programs
-
Maple
with(numtheory): for n from 1 to 10000 do:s:=sum(‘ithprime(k)’, ’k’=1..n):if bigomega(s)=2 and type(n,prime)=true then printf(`%d, `, n):else fi:od:
-
Mathematica
Select[Flatten[Position[If[PrimeOmega[#]==2,1,0]&/@Accumulate[ Prime[ Range[ 5000]]],1]],PrimeQ] (* Harvey P. Dale, Jan 27 2022 *)
-
PARI
isok(n) = isprime(n) && bigomega(vecsum(primes(n))) == 2; \\ Michel Marcus, Sep 18 2017
Comments