cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213705 a(n)=n if n <= 3, otherwise a(n) = A007477(n-1) + A007477(n).

Original entry on oeis.org

1, 2, 3, 5, 9, 17, 33, 66, 134, 277, 579, 1224, 2610, 5609, 12135, 26408, 57770, 126962, 280192, 620674, 1379586, 3075943, 6877611, 15417934, 34646156, 78027146, 176087292, 398143230, 901827322, 2046112299, 4649558191, 10581041518, 24112473412, 55019560650, 125696393844, 287494670302
Offset: 1

Views

Author

Antti Karttunen, Sep 14 2012

Keywords

Comments

a(n) gives the number of "plausible parsings" of the sentence "Etsivät^(n+1)" in Finnish (with the most common word order, SV & SVO), that is, sentences which consist only of n+1 copies of the word "etsivät". See the OEIS Wiki page.
See A007477 for the number of plausible parsings of "Buffalo^n" sentences in English.
In my view the value of a(0) should be 0 in this context (single word "Etsivät." is not a valid Finnish sentence, except as an answer to a question), although this is arguable. However, it is probably that this sequence occurs in other (combinatorial) contexts as well, and there a(0) might be something else than 0, so I left it off, and made the sequence start from offset 1.

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 17*x^6 + 33*x^7 + ... - _Michael Somos_, Nov 07 2019
		

Crossrefs

Programs

  • Maple
    b:= n-> coeff(series(RootOf(A=(A*x)^2+x+1, A), x, n+1), x, n):
    a:= n-> `if`(n<2, n, b(n-1) +b(n)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Sep 14 2012
  • Mathematica
    (* b = A007477 *) b[n_] := Sum[Binomial[2*k+2, n-k-2]*Binomial[n-k-2, k]/(k + 1), {k, 0, n-2}]; a[n_] := b[n-1] + b[n]; a[1] = 1; a[2] = 2; Array[a, 40] (* Jean-François Alcover, Mar 04 2016 *)
  • PARI
    b(n) = sum(k=0, n - 2, binomial(2*k + 2, n - k - 2)*binomial(n - k - 2, k)/(k + 1));
    a(n) = if(n<3, n, b(n - 1) + b(n)); \\ Indranil Ghosh, Apr 11 2017
    
  • PARI
    {a(n) = polcoeff( (1 + x) * (1 - 2*x^2 - sqrt(1 - 4*x^2 - 4*x^3 + x^3 * O(x^n))) / (2*x^2), n)}; /* Michael Somos, Nov 07 2019 */
  • Python
    from sympy import binomial
    def b(n): return sum([binomial(2*k + 2, n - k - 2)*binomial(n - k - 2, k)//(k + 1) for k in range(n - 1)])
    def a(n): return n if n<3 else b(n - 1) + b(n)
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Apr 11 2017
    
  • Scheme
    : (define (A213705 n) (if (< n 2) n (+ (A007477 (- n 1)) (A007477 n))))
    

Formula

Given the g.f. A(x) and the g.f. of A007853 B(x), then -x = A(-B(x)). - Michael Somos, Nov 07 2019