cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213720 a(0)=0, a(1)=0; for n>1, a(n) = a(n-1) + (n+2)*a(n-2) + 1.

Original entry on oeis.org

0, 0, 1, 2, 9, 24, 97, 314, 1285, 4740, 20161, 81782, 364037, 1590768, 7415361, 34458418, 167934917, 822644860, 4181343201, 21456885262, 113446435685, 606954796712, 3329669253153, 18503539170954, 105074939752933, 604670497368692, 3546768810450817, 21082213234142886
Offset: 0

Views

Author

Olivier Gérard, Nov 02 2012

Keywords

Programs

  • Magma
    I:=[0,0,1,2]; [n le 4 select I[n] else 2*Self(n-1)+n*Self(n-2)-n*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 24 2012
  • Mathematica
    RecurrenceTable[{a[1] == 0, a[2] == 0, a[n] == a[n - 1] + (n + 1) a[n - 2] + 1}, a, {n, 30}] (* Bruno Berselli, Dec 24 2012 *)
    FullSimplify[CoefficientList[Series[1/6*E^(-(x^2/2))*(E^(x^2/2)*(Sqrt[2*Pi]*Erf[1/Sqrt[2]]*E^(1/2*(x+1)^2)*(x+1)*(x*(x+2)+4)-2*(x*(x+2)+3)-6*E^(1/2*x*(x+2))*(x+1)*(x*(x+2)+4)+6*E^x*(x*(x+3)+5))+Sqrt[2*Pi]*E^(x^2+x)*(x+1)*(x*(x+2)+4)*(3*Erf[x/Sqrt[2]]-Sqrt[E]*Erf[(x+1)/Sqrt[2]])), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Dec 27 2012 *)
    nxt[{n_,a_,b_}]:={n+1,b,b+a(n+3)+1}; NestList[nxt,{1,0,0},30][[;;,2]] (* Harvey P. Dale, Nov 23 2024 *)

Formula

a(n) = 2*a(n-1)+(n+1)*a(n-2)-(n+1)*a(n-3) with a(0)=a(1)=0, a(2)=1. - Vincenzo Librandi, Dec 24 2012
E.g.f.: 1/6*exp(-(x^2/2))*(exp(x^2/2)*(sqrt(2*Pi)*erf(1/sqrt(2))*exp(1/2*(x+1)^2)*(x+1)*(x*(x+2)+4)-2*(x*(x+2)+3)-6*exp(1/2*x*(x+2))*(x+1)*(x*(x+2)+4)+6*exp(x)*(x*(x+3)+5))+sqrt(2*Pi)*exp(x^2+x)*(x+1)*(x*(x+2)+4)*(3*erf(x/sqrt(2))-sqrt(exp(1))*erf((x+1)/sqrt(2)))). - Vaclav Kotesovec, Dec 27 2012
a(n) ~ (1/2*sqrt(Pi)-1/sqrt(2)+1/6*sqrt(Pi)*exp(1/2)*(erf(1/sqrt(2))-1)) * n^(n/2+3/2)*exp(sqrt(n)-n/2-1/4) * (1+43/(24*sqrt(n))). - Vaclav Kotesovec, Dec 27 2012

Extensions

More terms from Vincenzo Librandi, Dec 24 2012
Edited by Bruno Berselli, Dec 24 2012