cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213810 a(n) = 4*n^2 - 482*n + 14561.

Original entry on oeis.org

14561, 14083, 13613, 13151, 12697, 12251, 11813, 11383, 10961, 10547, 10141, 9743, 9353, 8971, 8597, 8231, 7873, 7523, 7181, 6847, 6521, 6203, 5893, 5591, 5297, 5011, 4733, 4463, 4201, 3947, 3701, 3463, 3233, 3011, 2797, 2591, 2393, 2203, 2021, 1847, 1681, 1523
Offset: 0

Views

Author

Marius Coman, Jun 20 2012

Keywords

Comments

A "prime-generating" polynomial: This polynomial generates 88 distinct primes for 0 <= n <= 99, just two primes fewer than the record held by the polynomial discovered by N. Boston and M. L. Greenwood, that is 41*n^2 - 4641*n + 88007 (this polynomial is sometimes cited as 41*n^2 + 33*n - 43321, which is the same for the input values [-57,42], see the references below).
The nonprime terms in the first 100 are: 10961 = 97*113; 10547 = 53*199; 9353 = 47*199; 7181 = 43*167; 6847 = 41*167; 5893 = 71*83; 3233 = 53*61; 2021 = 43*47; 1681 = 41^2; 1763 = 41*43; 2491 = 47*53; 4331 = 61*71.
For n = m + 41 we obtain the polynomial 4*m^2 - 154*m + 1523, which generates 40 primes in a row starting from m = 0 (polynomial already reported, see the link below).

References

  • W. Narkiewicz, The Development of Prime Number Theory: from Euclid to Hardy and Littlewood, Springer Monographs in Mathematics, 2000, page 43.

Crossrefs

Programs

  • Mathematica
    Table[4n^2-482n+14561,{n,0,41}] (* Harvey P. Dale, Sep 09 2014 *)
    LinearRecurrence[{3,-3,1},{14561, 14083, 13613}, 50] (* or *) CoefficientList[Series[ (-15047*x^2+29600*x-14561)/(x-1)^3, {x,0,50}], x] (* G. C. Greubel, Feb 26 2017 *)
  • PARI
    x='x+O('x^50); Vec((-15047*x^2+29600*x-14561)/(x-1)^3) \\ G. C. Greubel, Feb 26 2017

Formula

a(n) = 4*n^2 - 482*n + 14561.
G.f.: (-15047*x^2 + 29600*x - 14561)/(x-1)^3. - Alexander R. Povolotsky, Jun 21 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - G. C. Greubel, Feb 26 2017
E.g.f.: exp(x)*(14561 - 478*x + 4*x^2). - Elmo R. Oliveira, Feb 09 2025

Extensions

Edited by N. J. A. Sloane, Nov 12 2016