A213810 a(n) = 4*n^2 - 482*n + 14561.
14561, 14083, 13613, 13151, 12697, 12251, 11813, 11383, 10961, 10547, 10141, 9743, 9353, 8971, 8597, 8231, 7873, 7523, 7181, 6847, 6521, 6203, 5893, 5591, 5297, 5011, 4733, 4463, 4201, 3947, 3701, 3463, 3233, 3011, 2797, 2591, 2393, 2203, 2021, 1847, 1681, 1523
Offset: 0
References
- W. Narkiewicz, The Development of Prime Number Theory: from Euclid to Hardy and Littlewood, Springer Monographs in Mathematics, 2000, page 43.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- R. A. Mollin, Prime-Producing Quadratics, The American Mathematical Monthly, Vol. 104, No. 6 (1997), pp. 529-544.
- Carlos Rivera, Puzzle 232: Primes and Cubic polynomials, The Prime Puzzles & Problems Connection.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[4n^2-482n+14561,{n,0,41}] (* Harvey P. Dale, Sep 09 2014 *) LinearRecurrence[{3,-3,1},{14561, 14083, 13613}, 50] (* or *) CoefficientList[Series[ (-15047*x^2+29600*x-14561)/(x-1)^3, {x,0,50}], x] (* G. C. Greubel, Feb 26 2017 *)
-
PARI
x='x+O('x^50); Vec((-15047*x^2+29600*x-14561)/(x-1)^3) \\ G. C. Greubel, Feb 26 2017
Formula
a(n) = 4*n^2 - 482*n + 14561.
G.f.: (-15047*x^2 + 29600*x - 14561)/(x-1)^3. - Alexander R. Povolotsky, Jun 21 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - G. C. Greubel, Feb 26 2017
E.g.f.: exp(x)*(14561 - 478*x + 4*x^2). - Elmo R. Oliveira, Feb 09 2025
Extensions
Edited by N. J. A. Sloane, Nov 12 2016
Comments