cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A341456 Let T be the set of sequences {t(k), k >= 0} such that for any k >= 3, t(k) = t(k-1) + t(k-2) + t(k-3); a(n) is the least possible value of t(0) + t(1) + t(2) for an element t of T containing n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 2, 1, 2, 3, 3, 3, 2, 3, 1, 3, 2, 4, 1, 3, 2, 3, 4, 3, 5, 3, 4, 2, 4, 3, 4, 1, 4, 3, 2, 5, 4, 5, 1, 5, 3, 5, 2, 5, 3, 5, 4, 3, 6, 5, 6, 3, 6, 4, 3, 2, 6, 4, 3, 5, 4, 7, 1, 7, 4, 7, 3, 4, 2, 7, 5, 4, 6, 5, 4, 1, 8, 5, 4, 3, 5
Offset: 0

Views

Author

Rémy Sigrist, Feb 12 2021

Keywords

Comments

This sequence is a variant of A249783; here we consider tribonacci-like sequences, there Fibonacci like sequences. The scatterplots of these sequences both present polygonal shapes emerging from the origin.

Examples

			The first terms of the elements t of T such that t(0) + t(1) + t(2) <= 2 are:
  t(0)+t(1)+t(2)  t(0)  t(1)  t(2)  t(3)  t(4)  t(5)  t(6)  t(7)  t(8)  t(9)
  --------------  ----  ----  ----  ----  ----  ----  ----  ----  ----  ----
               0     0     0     0     0     0     0     0     0     0     0
               1     0     0     1     1     2     4     7    13    24    44
               1     0     1     0     1     2     3     6    11    20    37
               1     1     0     0     1     1     2     4     7    13    24
               2     0     0     2     2     4     8    14    26    48    88
               2     0     1     1     2     4     7    13    24    44    81
               2     0     2     0     2     4     6    12    22    40    74
               2     1     0     1     2     3     6    11    20    37    68
               2     1     1     0     2     3     5    10    18    33    61
               2     2     0     0     2     2     4     8    14    26    48
- so a(0) = 0,
     a(1) = a(2) = a(3) = a(4) = a(6) = a(7) = a(11) = 1,
     a(5) = = a(8) = a(10) = 2.
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(n) = 0 iff n = 0.
a(n) = 1 iff n belongs to A213816.
a(n) <= n.

A274759 Modified quadranacci series.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 6, 7, 8, 12, 14, 15, 23, 27, 29, 44, 52, 56, 85, 100, 108, 164, 193, 208, 316, 372, 401, 609, 717, 773, 1174, 1382, 1490, 2263, 2664, 2872, 4362, 5135, 5536, 8408, 9898, 10671, 16207, 19079, 20569, 31240, 36776, 39648, 60217, 70888, 76424, 116072, 136641
Offset: 0

Views

Author

G. C. Greubel, Jul 04 2016

Keywords

Crossrefs

Cf. A213816.

Programs

  • Mathematica
    CoefficientList[Series[x*(1 + x + x^2 + x^4 + x^5 + x^8)/(1 - x^3 - x^6 - x^9 - x^12), {x, 0, 25}], x] (* or *) LinearRecurrence[{0,0,1,0,0,1,0,0, 1,0,0,1},{0,1,1,1,1,2,2,2,3,4,4,6}, 50]
  • PARI
    concat(0, Vec(x*(1+x+x^2+x^4+x^5+x^8)/(1-x^3-x^6-x^9-x^12) + O(x^99))) \\ Altug Alkan, Jul 04 2016

Formula

a(3n) = a(3n-3) + a(3n-6) + a(3n-9) + a(3n-12).
a(3n + 2) = a(3n + 1) + a(3n - 2).
a(3n + 3) = a(3n + 1) + a(3n - 1).
a(3n + 4) = a(3n + 1) + a(3n).
G.f.: x*(1 + x + x^2 + x^4 + x^5 + x^8)/(1 - x^3 - x^6 - x^9 - x^12).

A308189 Numbers of the form t_n or t_n + t_{n+1} where {t_n} are the tribonacci numbers A000073.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 11, 13, 20, 24, 37, 44, 68, 81, 125, 149, 230, 274, 423, 504, 778, 927, 1431, 1705, 2632, 3136, 4841, 5768, 8904, 10609, 16377, 19513, 30122, 35890, 55403, 66012, 101902, 121415, 187427, 223317, 344732, 410744, 634061, 755476, 1166220, 1389537, 2145013, 2555757, 3945294, 4700770, 7256527
Offset: 1

Views

Author

N. J. A. Sloane, Jun 09 2019

Keywords

Comments

Orders of squares in the ternary tribonacci word A080843.
This is A213816 with duplicates removed.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,1,0,1,0,1},{0,1,2,3,4,6,7,11},100] (* Paolo Xausa, Nov 14 2023 *)
  • PARI
    concat(0, Vec(x^2*(1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6) / (1 - x^2 - x^4 - x^6) + O(x^50))) \\ Colin Barker, Jun 11 2019

Formula

From Colin Barker, Jun 11 2019: (Start)
G.f.: x^2*(1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6) / (1 - x^2 - x^4 - x^6).
a(n) = a(n-2) + a(n-4) + a(n-6) for n>8.
(End)

A341474 Let T be the set of sequences {t(k), k >= 0} such that for any k >= 3, t(k) = t(k-1) + t(k-2) + t(k-3); a(n) is the least possible value of t(0)^2 + t(1)^2 + t(2)^2 for an element t of T containing n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 4, 3, 2, 1, 4, 1, 4, 5, 5, 3, 2, 5, 1, 6, 4, 6, 1, 5, 4, 5, 9, 5, 9, 3, 10, 2, 10, 5, 8, 1, 6, 9, 4, 17, 6, 13, 1, 11, 5, 13, 4, 9, 5, 9, 16, 5, 18, 9, 14, 3, 14, 10, 9, 2, 12, 10, 5, 21, 8, 19, 1, 17, 6, 19, 9, 10, 4, 17, 17, 6, 26, 13
Offset: 0

Views

Author

Rémy Sigrist, Feb 13 2021

Keywords

Comments

This sequence is a variant of A286327; here we consider tribonacci-like sequences, there Fibonacci like sequences. The scatterplots of these sequences are similar.

Examples

			The first terms of the elements t of T such that t(0)^2 + t(1)^2 + t(2)^2 <= 4 are:
  t(0)^2+t(1)^2+t(3)^2  t(0)  t(1)  t(2)  t(3)  t(4)  t(5)  t(6)  t(7)  t(8)  t(9)
  --------------------  ----  ----  ----  ----  ----  ----  ----  ----  ----  ----
                     0     0     0     0     0     0     0     0     0     0     0
                     1     0     0     1     1     2     4     7    13    24    44
                     1     0     1     0     1     2     3     6    11    20    37
                     1     1     0     0     1     1     2     4     7    13    24
                     2     0     1     1     2     4     7    13    24    44    81
                     2     1     0     1     2     3     6    11    20    37    68
                     2     1     1     0     2     3     5    10    18    33    61
                     3     1     1     1     3     5     9    17    31    57   105
                     4     0     0     2     2     4     8    14    26    48    88
                     4     0     2     0     2     4     6    12    22    40    74
                     4     2     0     0     2     2     4     8    14    26    48
- so a(0) = 0,
     a(1) = a(2) = a(3) = a(4) = a(6) = a(7) = a(11) = 1,
     a(5) = a(10) = a(18) = 2,
     a(9) = a(17) = 3,
     a(8) = a(12) = a(14) = 4.
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(n) = 0 iff n = 0.
a(n) = 1 iff n belongs to A213816.
a(n) <= n^2.
Showing 1-4 of 4 results.