A213879 Positive palindromes that are not the sum of two positive palindromes.
1, 111, 131, 141, 151, 161, 171, 181, 191, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10301, 10401, 10501, 10601, 10701, 10801, 10901, 11111, 11211, 11311, 11411, 11511, 11611, 11711, 11811, 11911, 12021, 12121, 12321, 12421, 12521, 12621, 12721, 12821
Offset: 1
Examples
22 is not a member because 22 = 11 + 11.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2151 (first 111 terms from N. J. A. Sloane)
- Eric Weisstein's World of Mathematics, Palindromic Number
- Index entries for sequences related to palindromes
Programs
-
Maple
# From N. J. A. Sloane, Sep 09 2015: bP is a list of the palindromes a:={}; M:=400; for n from 3 to M do p:=bP[n]; # is p a sum of two palindromes? sw:=-1; for i from 2 to n-1 do j:=p-bP[i]; if digrev(j)=j then sw:=1; break; fi; od; if sw<0 then a:={op(a),p}; fi; od: b:=sort(convert(a,list));
-
Mathematica
lst1 = {}; lst2 = {}; r = 12821; Do[If[FromDigits@Reverse@IntegerDigits[n] == n, AppendTo[lst1, n]], {n, r}]; l = Length[lst1]; Do[s = lst1[[i]] + lst1[[j]]; AppendTo[lst2, s], {i, l - 1}, {j, i}]; Complement[lst1, lst2] palQ[n_] := Reverse[x = IntegerDigits[n]] == x; t1 = Select[Range[12900], palQ[#] &]; Complement[t1, Union[Flatten[Table[i + j, {i, t1}, {j, t1}]]]] (* Jayanta Basu, Jun 15 2013 *)
Comments