A213925 Triangle read by rows: n-th row contains Fermi-Dirac representation of n.
1, 2, 3, 4, 5, 2, 3, 7, 2, 4, 9, 2, 5, 11, 3, 4, 13, 2, 7, 3, 5, 16, 17, 2, 9, 19, 4, 5, 3, 7, 2, 11, 23, 2, 3, 4, 25, 2, 13, 3, 9, 4, 7, 29, 2, 3, 5, 31, 2, 16, 3, 11, 2, 17, 5, 7, 4, 9, 37, 2, 19, 3, 13, 2, 4, 5, 41, 2, 3, 7, 43, 4, 11, 5, 9, 2, 23, 47, 3, 16, 49, 2, 25
Offset: 1
Examples
First rows: . 1: 1 . 2: 2 . 3: 3 . 4: 4 . 5: 5 . 6: 2 3 . 7: 7 . 8: 2 4 8 = 2^2^0 * 2^2^1 . 9: 9 . 10: 2 5 ....... . 990: 2 5 9 11 . 991: 991 . 992: 2 16 31 992 = 2^2^0 * 2^2^2 * 31^2^0 . 993: 3 331 . 994: 2 7 71 . 995: 5 199 . 996: 3 4 83 . 997: 997 . 998: 2 499 . 999: 3 9 37 999 = 3^2^0 * 3^2^1 * 37^2^0 . 1000: 2 4 5 25 1000 = 2^2^0 * 2^2^1 * 5^2^0 * 5^2^1 .
Links
- Alois P. Heinz, Rows n = 1..8000, flattened (first 1000 rows from Reinhard Zumkeller)
- OEIS Wiki, "Fermi-Dirac representation" of n.
Programs
-
Haskell
a213925 n k = a213925_row n !! (k-1) a213925_row 1 = [1] a213925_row n = reverse $ fd n (reverse $ takeWhile (<= n) a050376_list) where fd 1 _ = [] fd x (q:qs) = if m == 0 then q : fd x' qs else fd x qs where (x',m) = divMod x q a213925_tabf = map a213925_row [1..]
-
Maple
T:= n-> `if`(n=1, [1], sort([seq((l-> seq(`if`(l[j]=1, i[1]^(2^(j-1)), [][]), j=1..nops(l)))(convert(i[2], base, 2)), i=ifactors(n)[2])]))[]: seq(T(n), n=1..60); # Alois P. Heinz, Feb 20 2018
-
Mathematica
nmax = 50; FDPrimes = Reap[k = 1; While[lim = nmax^(1/k); lim > 2, Sow[Prime[Range[PrimePi[lim]]]^k]; k = 2 k]][[2, 1]] // Flatten // Union; f[1] = 1; f[n_] := Reap[m = n; Do[If[m == 1, Break[], If[Divisible[m, p], m = m/p; Sow[p]]], {p, Reverse[FDPrimes]}]][[2, 1]] // Reverse; Array[f, nmax] // Flatten (* Jean-François Alcover, Feb 05 2019 *)
-
PARI
row(n) = if(n == 1, [1], my(f = factor(n), p = f[, 1], e = f[, 2], r = [], b); for(i = 1, #p, b = binary(e[i]); for(j = 0, #b-1, if(b[#b-j], r = concat(r, p[i]^(2^j))))); r); \\ Amiram Eldar, May 02 2025
Formula
Product_{k=1..A064547(n)} T(n,k) = n.
Extensions
Example corrected (row 992) by Reinhard Zumkeller, Mar 11 2015
Comments