cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213998 Numerators of the triangle of fractions read by rows: pf(n,0) = 1, pf(n,n) = 1/(n+1) and pf(n+1,k) = pf(n,k) + pf(n,k-1) with 0 < k < n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 1, 7, 13, 25, 1, 1, 9, 47, 77, 137, 1, 1, 11, 37, 57, 87, 49, 1, 1, 13, 107, 319, 459, 223, 363, 1, 1, 15, 73, 533, 743, 341, 481, 761, 1, 1, 17, 191, 275, 1879, 2509, 3349, 4609, 7129, 1, 1, 19, 121, 1207, 1627, 2131, 2761, 3601, 4861, 7381, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 03 2012

Keywords

Comments

T(n,0) = 1;
T(n,1) = A005408(n-1) for n > 0;
T(n,2) = A188386(n-2) for n > 2;
T(n,n-3) = A124837(n-2) for n > 2;
T(n,n-2) = A027612(n-1) for n > 1;
T(n,n-1) = A001008(n) for n > 0;
T(n,n) = 1;
A214075(n,k) = floor(T(n,k) / A213999(n,k)).

Examples

			Start of triangle pf with corresponding triangles of numerators and denominators:
. 0:                            1
. 1:                         1    1/2
. 2:                     1     3/2    1/3
. 3:                  1    5/2    11/6    1/4
. 4:              1   7/2    13/3    25/12    1/5
. 5:           1    9/2   47/6    77/12   137/60   1/6
. 6:        1  11/2   37/3    57/4    87/10    49/20    1/7
. 7:     1  13/2  107/6  319/12  459/20   223/20  363/140   1/8
. 8:  1  15/2  73/3  533/12  743/15  341/10   481/35   761/280  1/9,
.
. 0:   numerators     1                          1    denominators
. 1:                1  1                        1  2       A213999
. 2:              1   3  1                     1 2  3
. 3:            1   5  11 1                   1 2 6  4
. 4:          1  7  13  25  1                1 2 3  12 5
. 5:        1  9  47  77 137  1             1 2 6 12  60 6
. 6:      1 11  37 57  87  49  1           1 2 3 4 10  20  7
. 7:    1 13 107 319 459 223 363 1        1 2 6 12 20 20 140 8
. 8:  1 15 73 533 743 341 481 761 1,     1 2 3 12 15 10 35 280 9.
		

Crossrefs

Cf. A005408, A188386 (columns).
Cf. A001008, A027612, A124837 (diagonals).
Cf. A213999 (denominators).

Programs

  • Haskell
    import Data.Ratio ((%), numerator, denominator, Ratio)
    a213998 n k = a213998_tabl !! n !! k
    a213998_row n = a213998_tabl !! n
    a213998_tabl = map (map numerator) $ iterate pf [1] where
       pf row = zipWith (+) ([0] ++ row) (row ++ [-1 % (x * (x + 1))])
                where x = denominator $ last row
  • Mathematica
    T[, 0] = 1; T[n, n_] := 1/(n + 1);
    T[n_, k_] := T[n, k] = T[n - 1, k] + T[n - 1, k - 1];
    Table[T[n, k] // Numerator, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 10 2021 *)