A213998 Numerators of the triangle of fractions read by rows: pf(n,0) = 1, pf(n,n) = 1/(n+1) and pf(n+1,k) = pf(n,k) + pf(n,k-1) with 0 < k < n.
1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 1, 7, 13, 25, 1, 1, 9, 47, 77, 137, 1, 1, 11, 37, 57, 87, 49, 1, 1, 13, 107, 319, 459, 223, 363, 1, 1, 15, 73, 533, 743, 341, 481, 761, 1, 1, 17, 191, 275, 1879, 2509, 3349, 4609, 7129, 1, 1, 19, 121, 1207, 1627, 2131, 2761, 3601, 4861, 7381, 1
Offset: 0
Examples
Start of triangle pf with corresponding triangles of numerators and denominators: . 0: 1 . 1: 1 1/2 . 2: 1 3/2 1/3 . 3: 1 5/2 11/6 1/4 . 4: 1 7/2 13/3 25/12 1/5 . 5: 1 9/2 47/6 77/12 137/60 1/6 . 6: 1 11/2 37/3 57/4 87/10 49/20 1/7 . 7: 1 13/2 107/6 319/12 459/20 223/20 363/140 1/8 . 8: 1 15/2 73/3 533/12 743/15 341/10 481/35 761/280 1/9, . . 0: numerators 1 1 denominators . 1: 1 1 1 2 A213999 . 2: 1 3 1 1 2 3 . 3: 1 5 11 1 1 2 6 4 . 4: 1 7 13 25 1 1 2 3 12 5 . 5: 1 9 47 77 137 1 1 2 6 12 60 6 . 6: 1 11 37 57 87 49 1 1 2 3 4 10 20 7 . 7: 1 13 107 319 459 223 363 1 1 2 6 12 20 20 140 8 . 8: 1 15 73 533 743 341 481 761 1, 1 2 3 12 15 10 35 280 9.
Links
Crossrefs
Programs
-
Haskell
import Data.Ratio ((%), numerator, denominator, Ratio) a213998 n k = a213998_tabl !! n !! k a213998_row n = a213998_tabl !! n a213998_tabl = map (map numerator) $ iterate pf [1] where pf row = zipWith (+) ([0] ++ row) (row ++ [-1 % (x * (x + 1))]) where x = denominator $ last row
-
Mathematica
T[, 0] = 1; T[n, n_] := 1/(n + 1); T[n_, k_] := T[n, k] = T[n - 1, k] + T[n - 1, k - 1]; Table[T[n, k] // Numerator, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 10 2021 *)
Comments