cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214003 Number of degree-n permutations of prime order.

Original entry on oeis.org

0, 1, 5, 17, 69, 299, 1805, 9099, 37331, 205559, 4853529, 49841615, 789513659, 9021065871, 70737031469, 420565124399, 22959075244095, 385032305178719, 10010973102879761, 152163983393187399, 1498273284120348539, 15639918041915598815, 1296204202723400597109
Offset: 1

Views

Author

Stephen A. Silver, Feb 15 2013

Keywords

Examples

			The symmetric group S_5 has 25 elements of order 2, 20 elements of order 3, and 24 elements of order 5. All other elements are of nonprime order (1, 4, or 6), so a(5) = 25 + 20 + 24 = 69.
		

Crossrefs

Programs

  • Maple
    b:= proc(n,p) option remember;
          `if`(n add(b(n, ithprime(i)), i=1..numtheory[pi](n)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Feb 16 2013
    # second Maple program:
    b:= proc(n, g) option remember; `if`(n=0, `if`(isprime(g), 1, 0),
          add(b(n-j, ilcm(j, g))*(n-1)!/(n-j)!, j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=1..23);  # Alois P. Heinz, Jan 19 2023
  • Mathematica
    f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n],PrimeQ[Apply[LCM, #]] &]]], {n, 1,23}] (* Geoffrey Critzer, Nov 08 2015 *)

Formula

a(n) = Sum_{p prime} A057731(n,p).
E.g.f.: exp(x)*Sum_{p in Primes} exp(x^p/p)-1. - Geoffrey Critzer, Nov 08 2015