A214021 Number A(n,k) of n X k nonconsecutive tableaux; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 6, 6, 1, 1, 1, 0, 1, 22, 72, 18, 1, 1, 1, 0, 1, 92, 1289, 960, 57, 1, 1, 1, 0, 1, 422, 29889, 93964, 14257, 186, 1, 1, 1, 0, 1, 2074, 831174, 13652068, 8203915, 228738, 622, 1, 1
Offset: 0
Examples
A(2,4) = 1: [1 3 5 7] [2 4 6 8]. A(4,2) = 6: [1, 5] [1, 4] [1, 3] [1, 4] [1, 3] [1, 3] [2, 6] [2, 6] [2, 6] [2, 5] [2, 5] [2, 4] [3, 7] [3, 7] [4, 7] [3, 7] [4, 7] [5, 7] [4, 8] [5, 8] [5, 8] [6, 8] [6, 8] [6, 8]. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 6, 22, 92, 422, ... 1, 1, 6, 72, 1289, 29889, 831174, ... 1, 1, 18, 960, 93964, 13652068, 2621897048, ... 1, 1, 57, 14257, 8203915, 8134044455, 11865331748843, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..23, flattened
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- Wikipedia, Young tableau
Crossrefs
Programs
-
Maple
b:= proc(l, t) option remember; local n, s; n, s:= nops(l), add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and l[i]> `if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n)) end: A:= (n, k)-> `if`(n<1 or k<1, 1, b([k$n], 0)): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Sum[i, {i, l}]}; If[s == 0, 1, Sum[If[t != i && l[[i]] > If[i == n, 0, l[[i+1]]], b[ReplacePart[l, i -> l[[i]]-1], i], 0], {i, 1, n}]] ] ; a[n_, k_] := If[n < 1 || k < 1, 1, b[Array[k&, n], 0]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
Comments