cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214021 Number A(n,k) of n X k nonconsecutive tableaux; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 6, 6, 1, 1, 1, 0, 1, 22, 72, 18, 1, 1, 1, 0, 1, 92, 1289, 960, 57, 1, 1, 1, 0, 1, 422, 29889, 93964, 14257, 186, 1, 1, 1, 0, 1, 2074, 831174, 13652068, 8203915, 228738, 622, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 01 2012

Keywords

Comments

A standard Young tableau (SYT) where entries i and i+1 never appear in the same row is called a nonconsecutive tableau.

Examples

			A(2,4) = 1:
  [1 3 5 7]
  [2 4 6 8].
A(4,2) = 6:
  [1, 5]   [1, 4]   [1, 3]   [1, 4]   [1, 3]   [1, 3]
  [2, 6]   [2, 6]   [2, 6]   [2, 5]   [2, 5]   [2, 4]
  [3, 7]   [3, 7]   [4, 7]   [3, 7]   [4, 7]   [5, 7]
  [4, 8]   [5, 8]   [5, 8]   [6, 8]   [6, 8]   [6, 8].
Square array A(n,k) begins:
  1, 1,  1,     1,       1,          1,              1, ...
  1, 1,  0,     0,       0,          0,              0, ...
  1, 1,  1,     1,       1,          1,              1, ...
  1, 1,  2,     6,      22,         92,            422, ...
  1, 1,  6,    72,    1289,      29889,         831174, ...
  1, 1, 18,   960,   93964,   13652068,     2621897048, ...
  1, 1, 57, 14257, 8203915, 8134044455, 11865331748843, ...
		

Crossrefs

Rows n=0+2, 3-4 give: A000012, A001181(k) for k>0, A214875.
Columns k=0+1, 2, 3 give: A000012, A000957(n+1), A214159.
Main diagonal gives A264103.

Programs

  • Maple
    b:= proc(l, t) option remember; local n, s; n, s:= nops(l),
           add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and l[i]>
          `if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))
        end:
    A:= (n, k)-> `if`(n<1 or k<1, 1, b([k$n], 0)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Sum[i, {i, l}]}; If[s == 0, 1, Sum[If[t != i && l[[i]] > If[i == n, 0, l[[i+1]]], b[ReplacePart[l, i -> l[[i]]-1], i], 0], {i, 1, n}]] ] ; a[n_, k_] := If[n < 1 || k < 1, 1, b[Array[k&, n], 0]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)