A214028 Entry points for the Pell sequence: smallest k such that n divides A000129(k).
1, 2, 4, 4, 3, 4, 6, 8, 12, 6, 12, 4, 7, 6, 12, 16, 8, 12, 20, 12, 12, 12, 22, 8, 15, 14, 36, 12, 5, 12, 30, 32, 12, 8, 6, 12, 19, 20, 28, 24, 10, 12, 44, 12, 12, 22, 46, 16, 42, 30, 8, 28, 27, 36, 12, 24, 20, 10, 20, 12, 31, 30, 12, 64, 21, 12, 68, 8, 44, 6, 70, 24, 36, 38
Offset: 1
Keywords
Examples
11 first divides the term A000129(12) = 13860 = 2*3*5*7*11.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Bernadette Faye and Florian Luca, Pell Numbers whose Euler Function is a Pell Number, arXiv:1508.05714 [math.NT], 2015 (called z(n)).
- N. Robbins, On Pell numbers of the form p*x^2, where p is prime, Fib. Quart. 22 (4) (1984) 340-348, definition 1.
Programs
-
Maple
A214028 := proc(n) local a000129,k ; a000129 := [1,2,5] ; for k do if modp(a000129[1],n) = 0 then return k; end if; a000129[1] := a000129[2] ; a000129[2] := a000129[3] ; a000129[3] := 2*a000129[2]+a000129[1] ; end do: end proc: seq(A214028(n),n=1..40); # R. J. Mathar, May 26 2016
-
Mathematica
a[n_] := With[{s = Sqrt@ 2}, ((1 + s)^n - (1 - s)^n)/(2 s)] // Simplify; Table[k = 1; While[Mod[a[k], n] != 0, k++]; k, {n, 80}] (* Michael De Vlieger, Aug 25 2015, after Michael Somos at A000129 *) Table[k = 1; While[Mod[Fibonacci[k, 2], n] != 0, k++]; k, {n, 100}] (* G. C. Greubel, Aug 10 2018 *)
-
PARI
pell(n) = polcoeff(Vec(x/(1-2*x-x^2) + O(x^(n+1))), n); a(n) = {k=1; while (pell(k) % n, k++); k;} \\ Michel Marcus, Aug 25 2015
Formula
If p^2 does not divide A000129(a(p)) (that is, p is not in A238736) then a(p^e) = a(p)*p^(e - 1). If gcd(m, n) = 1 then a(mn) = lcm(a(m), a(n)). - Jianing Song, Aug 29 2018
Comments