cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A281026 a(n) = floor(3*n*(n+1)/4).

Original entry on oeis.org

0, 1, 4, 9, 15, 22, 31, 42, 54, 67, 82, 99, 117, 136, 157, 180, 204, 229, 256, 285, 315, 346, 379, 414, 450, 487, 526, 567, 609, 652, 697, 744, 792, 841, 892, 945, 999, 1054, 1111, 1170, 1230, 1291, 1354, 1419, 1485, 1552, 1621, 1692, 1764, 1837, 1912, 1989, 2067, 2146
Offset: 0

Views

Author

Bruno Berselli, Jan 13 2017

Keywords

Crossrefs

Subsequence of A214068.
Partial sums of A047273.
Cf. A011865, A045943, A274757 (subsequence).
Cf. sequences with formula floor(k*n*(n+1)/4): A011848 (k=1), A000217 (k=2), this sequence (k=3), A002378 (k=4).
Cf. sequences with formula floor(k*n*(n+1)/(k+1)): A000217 (k=1), A143978 (k=2), this sequence (k=3), A281151 (k=4), A194275 (k=5).

Programs

  • Magma
    [3*n*(n+1) div 4: n in [0..60]];
  • Maple
    A281026:=n->floor(3*n*(n+1)/4): seq(A281026(n), n=0..100); # Wesley Ivan Hurt, Jan 13 2017
  • Mathematica
    Table[Floor[3 n (n + 1)/4], {n, 0, 60}]
    LinearRecurrence[{3,-4,4,-3,1},{0,1,4,9,15},60] (* Harvey P. Dale, Jun 04 2023 *)
  • Maxima
    makelist(floor(3*n*(n+1)/4), n, 0, 60);
    
  • PARI
    vector(60, n, n--; floor(3*n*(n+1)/4))
    
  • Python
    [int(3*n*(n+1)/4) for n in range(60)]
    
  • Sage
    [floor(3*n*(n+1)/4) for n in range(60)]
    

Formula

O.g.f.: x*(1 + x + x^2)/((1 + x^2)*(1 - x)^3).
E.g.f.: -(1 - 6*x - 3*x^2)*exp(x)/4 - (1 + i)*(i - exp(2*i*x))*exp(-i*x)/8, where i=sqrt(-1).
a(n) = a(-n-1) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) = a(n-4) + 6*n - 9.
a(n) = 3*n*(n+1)/4 + (i^(n*(n+1)) - 1)/4. Therefore:
a(4*k+r) = 12*k^2 + 3*(2*r+1)*k + r^2, where 0 <= r <= 3.
a(n) = n^2 - floor((n-1)*(n-2)/4).
a(n) = A011865(3*n+2).

A214066 a(n) = floor( (3/2)*floor(5*n/2) ).

Original entry on oeis.org

0, 3, 7, 10, 15, 18, 22, 25, 30, 33, 37, 40, 45, 48, 52, 55, 60, 63, 67, 70, 75, 78, 82, 85, 90, 93, 97, 100, 105, 108, 112, 115, 120, 123, 127, 130, 135, 138, 142, 145, 150, 153, 157, 160, 165, 168, 172, 175, 180, 183, 187, 190
Offset: 0

Views

Author

Clark Kimberling, Jul 18 2012

Keywords

Comments

Also, numbers that are congruent to {0,3,7,10} mod 15. - Bruno Berselli, Jul 19 2012

Crossrefs

Cf. A214068.

Programs

  • Magma
    [n: n in [0..190] | n mod 15 in [0,3,7,10]];
    
  • Maple
    A214066:=n->floor((3/2)*floor(5*n/2)): seq(A214066(n), n=0..100); # Wesley Ivan Hurt, Jun 04 2016
  • Mathematica
    f[n_]:=Floor[(3/2)Floor[5n/2]]; t=Table[f[n], {n,0,70}]
  • Maxima
    makelist((30*n+2*%i^((n-1)*n)+3*(-1)^n-5)/8, n, 0, 51);
    
  • PARI
    concat(0, Vec((3+4*x+3*x^2+5*x^3)/((1+x)*(1-x)^2*(1+x^2))+O(x^51))) (End)

Formula

From Bruno Berselli, Jul 19 2012: (Start)
G.f.: x*(3+4*x+3*x^2+5*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (30*n+2*i^((n-1)*n)+3*(-1)^n-5)/8, where i=sqrt(-1). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Wesley Ivan Hurt, Jun 04 2016

A214067 a(n) = [(5/2)*[(5/2)*n]], where [ ] = floor.

Original entry on oeis.org

0, 5, 12, 17, 25, 30, 37, 42, 50, 55, 62, 67, 75, 80, 87, 92, 100, 105, 112, 117, 125, 130, 137, 142, 150, 155, 162, 167, 175, 180, 187, 192, 200, 205, 212, 217, 225, 230, 237, 242, 250, 255, 262, 267, 275, 280, 287, 292, 300
Offset: 0

Views

Author

Clark Kimberling, Jul 20 2012

Keywords

Comments

Also, numbers congruent to {0,5,12,17} mod 25.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Floor[(5/2)Floor[5n/2]];
    t=Table[f[n],{n,0,70}]

Formula

a(n) = (50*n - 7 + 5*(-1)^n + (1 + i)*(-i)^n + (1 - i)*i^n)/8, where i = sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5).
G.f.: f(x)/g(x), where f(x) = 5*x + 7*x^2 + 5*x^3 + 8*x^4 and g(x) = (1 + x + x^2 + x^3)*(1 - x)^2
Showing 1-3 of 3 results.