cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214085 n^2 * (n^4 - n^2 + n + 1) / 2.

Original entry on oeis.org

0, 1, 30, 342, 1960, 7575, 22806, 57820, 129312, 262845, 495550, 879186, 1483560, 2400307, 3747030, 5671800, 8358016, 12029625, 16956702, 23461390, 31924200, 42790671, 56578390, 73884372, 95392800, 121883125, 154238526, 193454730, 240649192, 297070635
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 07 2012

Keywords

Comments

Row sums of the triangle in A214084.

Programs

  • Haskell
    a214085 n = n^2 * (n^4 - n^2 + n + 1) `div` 2
    
  • Magma
    [n^2*(n^4-n^2+n+1)/2: n in [0..29]]; // Bruno Berselli, Jul 09 2012
  • Mathematica
    Table[n^2 (n^4 - n^2 + n + 1)/2, {n, 0, 29}] (* Bruno Berselli, Jul 09 2012 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,30,342,1960,7575,22806},40] (* Harvey P. Dale, Dec 12 2012 *)

Formula

a(n) = n * A000217(n) * A100104(n).
a(n) = A000217(A000578(n)) - A000217(A000290(n) - 1).
G.f.: x*(1+23*x+153*x^2+161*x^3+22*x^4)/(1-x)^7. - Bruno Berselli, Jul 09 2012
a(0)=0, a(1)=1, a(2)=30, a(3)=342, a(4)=1960, a(5)=7575, a(6)=22806, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Harvey P. Dale, Dec 12 2012