A214089 Least prime p such that the first n primes divide p^2-1.
3, 5, 11, 29, 419, 1429, 1429, 315589, 1729001, 57762431, 1724478911, 6188402219, 349152569039, 1430083494841, 390499187164241, 1010518715554349, 18628320726623609, 522124211958421799, 522124211958421799, 5936798290039408015951, 311263131154464891496249
Offset: 1
Examples
a(5) = 419: 419^2-1 = 175560 = 2^3*3*5*7*11*19 contains the first 5 primes. a(7) = 1429: 1428=2^2*3*7*17, 1430=2*5*11*13 contains the first 7 primes. a(8) = 315589: 315589^2-1 = 2^3*3*5*7*11*13*17^2*19*151 contains the first 8 primes.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..32
Programs
-
Maple
A214089 := proc(n) local m,k,p; m:= 2*mul(ithprime(j),j=1..n); for k from 1 do p:= sqrt(m*k+1); if type(p,integer) and isprime(p) then return(p) end if end do end proc; # Robert Israel, Aug 19 2012
-
Mathematica
f[n_] := Block[{k = 1, p = Times @@ Prime@Range@n}, While[! IntegerQ@Sqrt[4 k*p + 1], k++]; Block[{j = k}, While[! PrimeQ[Sqrt[4 j*p + 1]], j++]; Sqrt[4 j*p + 1]]]; Array[f, 10] (* J. Stauduhar, Aug 18 2012 *)
-
PARI
A214089(n) = { local(a,k=4,p) ; a=prod(j=1,n,prime(j)) ; while(1, if( issquare(k*a+1, &p), if(isprime(p), return(p); ) ; ) ; k+=4; ) ; } ;
-
PARI
{ a(n) = local(B,q); B=prod(i=1,n,prime(i))^2; forvec(v=vector(n-1,i,[0,1]), q=chinese(concat(vector(n-1,i,Mod((-1)^v[i],prime(i+1))),[Mod(1,2)])); forstep(s=lift(q),B-1,q.mod,if(ispseudoprime(s),B=s;break)) ); B } /* Max Alekseyev, Aug 22 2012 */
-
Python
from itertools import product from sympy import sieve, prime, isprime from sympy.ntheory.modular import crt def A214089(n): return 3 if n == 1 else int(min(filter(isprime,(crt(tuple(sieve.primerange(prime(n)+1)), t)[0] for t in product((1,-1),repeat=n))))) # Chai Wah Wu, May 31 2022
Extensions
a(15)-a(16) from Donovan Johnson, Jul 25 2012
a(17) from Charles R Greathouse IV, Aug 08 2012
a(18) from Charles R Greathouse IV, Aug 16 2012
a(19) from J. Stauduhar, Aug 18 2012
a(20)-a(32) from Max Alekseyev, Aug 22 2012
Comments