A215085
a(n) = (A214089(n)^2 - 1) divided by four times the product of the first n primes.
Original entry on oeis.org
1, 1, 1, 1, 19, 17, 1, 2567, 3350, 128928, 3706896, 1290179, 100170428, 39080794, 61998759572, 7833495265, 45119290746, 581075656330, 8672770990, 15792702394898740, 594681417768520250, 25509154378676494, 1642780344643617537867, 480931910076867717575
Offset: 1
A214089(14) = 1430083494841, n#_14 = 13082761331670030, and (1430083494841^2 - 1) / (4 * 13082761331670030) = 39080794, so a(14) = 39080794.
-
A215085 := proc(n)
(A214089(n)^2-1)/4/A002110(n) ;
end proc: # R. J. Mathar, Aug 21 2012
-
from itertools import product
from sympy import sieve, prime, isprime, primorial
from sympy.ntheory.modular import crt
def A215085(n):
return (
1
if n == 1
else (
int(
min(
filter(
isprime,
(
crt(tuple(sieve.primerange(prime(n) + 1)), t)[0]
for t in product((1, -1), repeat=n)
),
)
)
)
** 2
- 1
)
// 4
// primorial(n)
) # Chai Wah Wu, May 31 2022
for n in range(1, 16):
print(A215085(n), end=", ")
A073917
Smallest prime which leaves a remainder 1 when divided by primorial(n), i.e., when divided by first n primes.
Original entry on oeis.org
3, 7, 31, 211, 2311, 120121, 4084081, 106696591, 892371481, 71166625531, 200560490131, 29682952539241, 2129751844690471, 78496567990020181, 8608456956238879741, 97767475431570134191, 9613801750771063195351
Offset: 1
-
a(n)=if(n<0,0,s=1; while(prime(s)%prod(i=1,n, prime(i))>1,s++); s)
A103783
Primes of the form primorial P(k)*n-1 with minimal n, n>0, k>=2.
Original entry on oeis.org
5, 29, 419, 2309, 30029, 1021019, 19399379, 669278609, 38818159379, 601681470389, 14841476269619, 304250263527209, 235489703970060539, 1844669347765474229, 228124109340330313109, 24995884552004764307909
Offset: 1
P(2)*1-1=5 is prime, so a(2)=5;
P(9)*3-1=669278609 is prime, so a(9)=669278609;
-
nmax = 2^2048; npd = 2; n = 2; npd = npd*Prime[n]; While[npd < nmax, tt = 1; cp = npd*tt - 1; While[(tt <= (Prime[n])^2) && (! (PrimeQ[cp])), tt = tt + 1; cp = npd*tt - 1]; Print[cp]; n = n + 1; npd = npd*Prime[n]]
A215021
a(n) = A118478(n)*(A118478(n)+1) divided by the product of the first n primes.
Original entry on oeis.org
1, 1, 1, 1, 19, 17, 1, 409, 604, 82, 20951, 229931, 411012, 39080794, 4382914408, 6345486566, 45119290746, 581075656330, 8672770990, 869561574799171, 71853663603175593, 25509154378676494, 24040267482771436703, 102403319155457392955, 11302410854347731819765
Offset: 1
A214149
Least prime p such that the factorization of p^2-9 contains n consecutive primes beginning with prime(3)=5.
Original entry on oeis.org
7, 17, 157, 283, 20023, 20023, 6446437, 14382547, 122862737, 12925003913, 625586209427, 761375971073, 92757861866387, 15447055149567577, 192604162645538927, 192604162645538927, 724012906264106939197, 2667069644892918607163, 235168333030918497994787
Offset: 1
20020 = 2^2*5*7*11*13, 20026 = 2*17*19*31; 20023^2-9 contains 6 all-consecutive primes beginning with 5.
6446437^2-9 = 2^4*5*7^2*11*13*17^2*19*23*587 contains 7 all-consecutive primes, the first one being 5.
-
A214149(n)={ local(a, k=1, p) ; a=prod(j=3, n+2, prime(j)) ; while(1, if( issquare(k*a+9), p=sqrtint(k*a+9) ; if(isprime(p),return(p); ) ; ) ; k++ ; ) }
-
from itertools import product
from sympy import isprime, sieve, prime
from sympy.ntheory.modular import crt
def A214149(n): return 7 if n == 1 else int(min(filter(lambda n: n > 3 and isprime(n),(crt(tuple(sieve.primerange(5,prime(n+2)+1)), t)[0] for t in product((3,-3),repeat=n))))) # Chai Wah Wu, Jun 01 2022
A214150
Least prime p such that the factorization of p^2 - 25 contains n consecutive primes beginning with prime(4)=7.
Original entry on oeis.org
19, 61, 863, 5231, 84859, 532537, 3432203, 255634241, 4594884299, 44139608287, 644772297031, 33055909092211, 271103095974079, 93380069969929969, 1151842860713446127, 22664072571698543617, 2801339281067798957117, 137197247292115717439959
Offset: 1
a(4) = 5231, 5226 = 2*3*13*67, 5236 = 2^2*7*11*17, the factorization of 5231^2 - 25 contains the 4 consecutive primes 7, 11, 13 and 17 beginning with 7.
-
A214150(n)=
{ local(a, k=1, p);
a=prod(j=4, n+3, prime(j));
while( 1,
if( issquare(24*k*a+25, &p),
if( ispseudoprime(p), return(p) )
);
k++;
)}
-
from itertools import product
from sympy import isprime, sieve, prime
from sympy.ntheory.modular import crt
def A214150(n): return 19 if n == 1 else int(min(filter(lambda n: n > 5 and isprime(n),(crt(tuple(sieve.primerange(7,prime(n+3)+1)), t)[0] for t in product((5,-5),repeat=n))))) # Chai Wah Wu, Jun 01 2022
Showing 1-6 of 6 results.
Comments