A214247 Number A(n,k) of compositions of n where differences between neighboring parts are in {-k,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 1, 2, 5, 2, 1, 1, 1, 1, 1, 3, 3, 5, 4, 1, 1, 1, 1, 1, 1, 2, 2, 7, 3, 1, 1, 1, 1, 1, 1, 3, 3, 6, 10, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 9, 2
Offset: 0
Examples
A(5,0) = 2: [5], [1,1,1,1,1]. A(5,1) = 4: [5], [3,2], [2,3], [2,1,2]. A(5,2) = 2: [5], [1,3,1]. A(5,3) = 3: [5], [4,1], [1,4]. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 3, 1, 1, 1, 1, 1, 1, 1, ... 3, 2, 3, 1, 1, 1, 1, 1, 1, ... 2, 4, 2, 3, 1, 1, 1, 1, 1, ... 4, 5, 3, 2, 3, 1, 1, 1, 1, ... 2, 5, 2, 3, 2, 3, 1, 1, 1, ... 4, 7, 6, 1, 3, 2, 3, 1, 1, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n<1 or i<1, 0, `if`(n=i, 1, add(b(n-i, i+j, k), j={-k, k}))) end: A:= (n, k)-> `if`(n=0, 1, add(b(n, j, k), j=1..n)): seq(seq(A(n, d-n), n=0..d), d=0..15);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n < 1 || i < 1, 0, If[n == i, 1, Sum[b[n - i, i + j, k], { j, Union[{-k, k}]}]]]; a[n_, k_] := If[n == 0, 1, Sum[b[n, j, k], {j, 1, n}]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
-
PARI
tri(k) = {(k*(k+1)/2)} ra(n) = {(sqrt(1+8*n)-1)/2} C(q,n) = {c = if(n<=1, return(1)); return(sum(i=0, n-1, C(q, i) * C(q, n-1-i) * q^((i+1)*(n-1 -i))));} Cw_q(i,k) = {return(q^(((k+2)*i)+1) * polrecip(C(q^(2*k),i)))} A_qt(k,N) = {1 + sum(i=0,N/(k+1), t^((2*i)+1) * Cw_q(i,k) * (sum(j=0,ra(N+2)+1, prod(u=1,j, sum(v=0,(N-(tri(u)*k))/(k+2), t^((2*v)+1) * q^(((2*v)+1)*u*k) * Cw_q(v,k)))))^2)} A_q(k,N) = {my(q='q+O('q^N), Aqt = A_qt(k,N), Aq = 1); for(i=1,poldegree(Aqt,t), Aq += polcoef(Aqt,i,t)/(1-q^i)); Aq} A214247_array(maxrow,maxcolumn) = {my(m=concat([1],vector(maxrow,n,numdiv(n)))~); for(k=1,maxcolumn, m = matconcat([m,Vec(A_q(k,maxrow))~])); m} A214247_array(10,10) \\ John Tyler Rascoe, Oct 15 2024
Formula
G.f. for column k > 0: A(k,q) is A(k,q,t) = Sum_{n,m>=0} (q^n)*(t^m) under the transform (q^n)*(t^m) -> (q^n)/(1-q^m) for all m > 0 where A(k,q,t) = 1 + Sum_{i>=0} ( t^((2*i)+1) * Cw(i,k,q) * (Sum_{j>=0} (Product_{u=1..j} (Sum_{v>=0} t^((2*v)+1) * q^(((2*v)+1)*k*u) * Cw(v,k,q))))^2 ), Cw(i,k,q) = q^(((k+2)*i)+1) * Ca(i,q^(2*k)), and Ca(i,q) is the i-th Carlitz-Riordan q-Catalan number (i-th row polynomial of A227543). - John Tyler Rascoe, Sep 13 2024