cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A173258 Number of compositions of n where differences between neighboring parts are in {-1,1}.

Original entry on oeis.org

1, 1, 1, 3, 2, 4, 5, 5, 7, 10, 9, 14, 16, 19, 24, 31, 35, 45, 55, 66, 84, 104, 124, 156, 192, 236, 292, 363, 444, 551, 681, 839, 1040, 1287, 1586, 1967, 2430, 3001, 3717, 4597, 5683, 7034, 8697, 10758, 13312, 16469, 20369, 25204, 31180, 38574, 47726, 59047
Offset: 0

Views

Author

Alois P. Heinz, Jul 08 2012

Keywords

Examples

			a(3) = 3: [3], [2,1], [1,2].
a(4) = 2: [4], [1,2,1].
a(5) = 4: [5], [3,2], [2,3], [2,1,2].
a(6) = 5: [6], [3,2,1], [2,1,2,1], [1,2,3], [1,2,1,2].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n<1 or i<1, 0, `if`(n=i, 1, add(b(n-i, i+j), j=[-1, 1])))
        end:
    a:= n-> `if`(n=0, 1, add(b(n, j), j=1..n)):
    seq(a(n), n=0..70);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n < 1 || i < 1, 0, If[n == i, 1, Sum[b[n - i, i + j], {j, {-1, 1}}]]]; a[n_] := If[n == 0, 1, Sum[b[n, j], {j, 1, n}]]; Table[a[n], {n, 0, 70}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
  • PARI
    step(R,n)={matrix(n, n, i, j, if(i>j, if(j>1, R[i-j, j-1]) + if(j+1<=n, R[i-j, j+1])) )}
    a(n)={my(R=matid(n), t=(n==0), m=0); while(R, m++; t+=vecsum(R[n,]); R=step(R,n)); t} \\ Andrew Howroyd, Aug 23 2019

Formula

a(n) ~ c * d^n, where d=1.23729141259673487395949649334678514763130846902468..., c=1.134796087242490181499736234755111281606636700030106.... - Vaclav Kotesovec, May 01 2014
G.f.: 1 + Sum_{k>0} G(x,k) where G(x,k) = x^k*(1 + G(x,k+1) + G(x,k-1)) for k > 0 and G(x,0) = 0. - John Tyler Rascoe, Sep 16 2023

A214258 Number T(n,k) of compositions of n where the difference between largest and smallest parts equals k; triangle T(n,k), n>=1, 0<=k

Original entry on oeis.org

1, 2, 0, 2, 2, 0, 3, 3, 2, 0, 2, 9, 3, 2, 0, 4, 11, 12, 3, 2, 0, 2, 25, 20, 12, 3, 2, 0, 4, 35, 49, 23, 12, 3, 2, 0, 3, 60, 95, 58, 23, 12, 3, 2, 0, 4, 96, 188, 123, 61, 23, 12, 3, 2, 0, 2, 157, 366, 266, 132, 61, 23, 12, 3, 2, 0, 6, 241, 714, 557, 294, 135, 61, 23, 12, 3, 2, 0
Offset: 1

Views

Author

Alois P. Heinz, Jul 08 2012

Keywords

Comments

For fixed k > 0, limit_{n->infinity} T(n,k)^(1/n) = d, where d > 1 is the real root of the equation d^(k+2) - 2*d^(k+1) + 1 = 0. - Vaclav Kotesovec, Jan 07 2019

Examples

			T(4,0) = 3: [4], [2,2], [1,1,1,1].
T(5,1) = 9: [3,2], [2,3], [2,2,1], [2,1,2], [2,1,1,1], [1,2,2], [1,2,1,1], [1,1,2,1], [1,1,1,2].
T(5,2) = 3: [3,1,1], [1,3,1], [1,1,3].
T(5,3) = 2: [4,1], [1,4].
T(6,2) = 12: [4,2], [3,2,1], [3,1,2], [3,1,1,1], [2,4], [2,3,1], [2,1,3], [1,3,2], [1,3,1,1], [1,2,3], [1,1,3,1], [1,1,1,3].
Triangle T(n,k) begins:
  1;
  2,  0;
  2,  2,  0;
  3,  3,  2,  0;
  2,  9,  3,  2,  0;
  4, 11, 12,  3,  2,  0;
  2, 25, 20, 12,  3,  2,  0;
  4, 35, 49, 23, 12,  3,  2,  0;
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k, s, t) option remember;
          `if`(n<0, 0, `if`(n=0, 1, add(b(n-j, k,
           min(s,j), max(t,j)), j=max(1, t-k+1)..s+k-1)))
        end:
    A:= proc(n, k) option remember;
          `if`(n=0, 1, add(b(n-j, k+1, j, j), j=1..n))
        end:
    T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n,k), k=0..n-1), n=1..15);
    # second Maple program:
    b:= proc(n, s, t) option remember; `if`(n=0, x^(t-s),
          add(b(n-j, min(s, j), max(t, j)), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n$2, 0)):
    seq(T(n), n=1..15);  # Alois P. Heinz, Jan 05 2019
  • Mathematica
    b[n_, k_, s_, t_] := b[n, k, s, t] = If[n < 0, 0, If[n == 0, 1, Sum [b[n-j, k, Min[s, j], Max[t, j]], {j, Max[1, t-k+1], s+k-1}]]]; A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[b[n-j, k+1, j, j], {j, 1, n}]]; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)

Formula

T(n,0) = A214257(n,0), T(n,k) = A214257(n,k)-A214257(n,k-1) for k>0.

A214269 Number T(n,k) of compositions of n where the difference between largest and smallest parts equals k and adjacent parts are unequal; triangle T(n,k), n>=1, 0<=k

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 1, 2, 0, 1, 3, 1, 2, 0, 1, 2, 8, 1, 2, 0, 1, 4, 7, 8, 1, 2, 0, 1, 2, 13, 12, 8, 1, 2, 0, 1, 4, 25, 18, 12, 8, 1, 2, 0, 1, 4, 27, 46, 23, 12, 8, 1, 2, 0, 1, 4, 43, 69, 51, 23, 12, 8, 1, 2, 0, 1, 3, 71, 111, 90, 56, 23, 12, 8, 1, 2, 0
Offset: 1

Views

Author

Alois P. Heinz, Jul 09 2012

Keywords

Examples

			T(7,0) = 1: [7].
T(7,1) = 4: [4,3], [3,4], [2,3,2], [1,2,1,2,1].
T(7,2) = 7: [3,1,3], [3,1,2,1], [2,1,3,1], [1,3,2,1], [1,3,1,2], [1,2,3,1], [1,2,1,3].
T(7,3) = 8: [5,2], [4,2,1], [4,1,2], [2,5], [2,4,1], [2,1,4], [1,4,2], [1,2,4].
T(7,4) = 1: [1,5,1].
T(7,5) = 2: [6,1], [1,6].
Triangle T(n,k) begins:
  1;
  1,  0;
  1,  2,  0;
  1,  1,  2,  0;
  1,  3,  1,  2,  0;
  1,  2,  8,  1,  2,  0;
  1,  4,  7,  8,  1,  2,  0;
  1,  2, 13, 12,  8,  1,  2,  0;
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k, s, t, l) option remember;
          `if`(n<0, 0, `if`(n=0, 1, add(`if`(j=l, 0, b(n-j, k,
           min(s, j), max(t, j), j)), j=max(1, t-k+1)..s+k-1)))
        end:
    A:= proc(n, k) option remember;
          `if`(n=0, 1, add(b(n-j, k+1, j, j, j), j=1..n))
        end:
    T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n-1), n=1..14);
  • Mathematica
    b[n_, k_, s_, t_, l_] := b[n, k, s, t, l] = If[n < 0, 0, If[n == 0, 1, Sum [If[j == l, 0, b[n-j, k, Min[s, j], Max[t, j], j]], {j, Max[1, t-k+1], s+k-1}] ] ]; a[n_, k_] := a[n, k] = If[n == 0, 1, Sum[b[n - j, k+1, j, j, j], {j, 1, n}]]; t[n_, k_] := a[n, k] - If[k == 0, 0, a[n, k-1]]; Table[Table[t[n, k], {k, 0, n-1}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from Maple *)

Formula

T(n,0) = 1, T(n,k) = A214268(n,k) - A214268(n,k-1) for k>0.

A214248 Number A(n,k) of compositions of n where differences between neighboring parts are in {-k,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 1, 1, 2, 4, 6, 2, 1, 1, 2, 4, 8, 11, 4, 1, 1, 2, 4, 8, 14, 17, 2, 1, 1, 2, 4, 8, 16, 27, 29, 4, 1, 1, 2, 4, 8, 16, 30, 49, 47, 3, 1, 1, 2, 4, 8, 16, 32, 59, 92, 78, 4, 1, 1, 2, 4, 8, 16, 32, 62, 113, 170, 130, 2
Offset: 0

Views

Author

Alois P. Heinz, Jul 08 2012

Keywords

Examples

			A(3,0) = 2: [3], [1,1,1].
A(4,1) = 6: [4], [2,2], [2,1,1], [1,2,1], [1,1,2], [1,1,1,1].
A(5,2) = 14: [5], [3,2], [3,1,1], [2,3], [2,2,1], [2,1,2], [2,1,1,1], [1,3,1], [1,2,2], [1,2,1,1], [1,1,3], [1,1,2,1], [1,1,1,2], [1,1,1,1,1].
Square array A(n,k) begins:
  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1, ...
  2,  2,  2,  2,  2,  2,  2,  2, ...
  2,  4,  4,  4,  4,  4,  4,  4, ...
  3,  6,  8,  8,  8,  8,  8,  8, ...
  2, 11, 14, 16, 16, 16, 16, 16, ...
  4, 17, 27, 30, 32, 32, 32, 32, ...
  2, 29, 49, 59, 62, 64, 64, 64, ...
		

Crossrefs

Columns k=0-2 give: A000005, A034297, A214255.
Main diagonal gives: A011782.

Programs

  • Maple
    b:= proc(n, i, k) option remember;
          `if`(n<1 or i<1, 0, `if`(n=i, 1, add(b(n-i, i+j, k), j={$-k..k})))
        end:
    A:= (n, k)-> `if`(n=0, 1, add(b(n, j, k), j=1..n)):
    seq(seq(A(n, d-n), n=0..d), d=0..15);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n < 1 || i < 1, 0, If[n == i, 1, Sum[b[n - i, i + j, k], {j, -k, k}]]]; A[n_, k_] := If[n == 0, 1, Sum[b[n, j, k], {j, 1, n}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

A214249 Number A(n,k) of compositions of n where differences between neighboring parts are in {-k,...,k} \ {0}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 3, 4, 5, 5, 1, 1, 1, 1, 3, 4, 7, 11, 5, 1, 1, 1, 1, 3, 4, 7, 12, 14, 7, 1, 1, 1, 1, 3, 4, 7, 14, 20, 18, 10, 1, 1, 1, 1, 3, 4, 7, 14, 21, 30, 36, 9, 1, 1, 1, 1, 3, 4, 7, 14, 23, 36, 50, 49, 14, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 08 2012

Keywords

Examples

			A(3,0) = 1: [3].
A(4,1) = 2: [4], [1,2,1].
A(5,2) = 5: [5], [3,2], [2,3], [2,1,2], [1,3,1].
A(6,3) = 12: [6], [4,2], [3,2,1], [3,1,2], [2,4], [2,3,1], [2,1,3], [2,1,2,1], [1,4,1], [1,3,2], [1,2,3], [1,2,1,2].
Square array A(n,k) begins:
  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  3,  3,  3,  3,  3,  3,  3, ...
  1,  2,  4,  4,  4,  4,  4,  4, ...
  1,  4,  5,  7,  7,  7,  7,  7, ...
  1,  5, 11, 12, 14, 14, 14, 14, ...
  1,  5, 14, 20, 21, 23, 23, 23, ...
		

Crossrefs

Columns k=0-2 give: A000012, A173258, A214256.
Main diagonal gives: A003242.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n<1 or i<1, 0,
          `if`(n=i, 1, add(b(n-i, i+j, k), j={$-k..k} minus{0})))
        end:
    A:= (n, k)-> `if`(n=0, 1, add(b(n, j, min(n, k)), j=1..n)):
    seq(seq(A(n, d-n), n=0..d), d=0..15);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n<1 || i<1, 0, If[n == i, 1, Sum[b[n-i, i+j, k], {j, Range[-k, -1] ~Join~ Range[k]}]]]; A[n_, k_] := If[n == 0, 1, Sum[b[n, j, Min[n, k]], {j, 1, n}]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)

A214246 Number A(n,k) of compositions of n where differences between neighboring parts are in {-k,0,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 1, 1, 2, 2, 6, 2, 1, 1, 2, 2, 5, 11, 4, 1, 1, 2, 2, 3, 5, 17, 2, 1, 1, 2, 2, 3, 4, 10, 29, 4, 1, 1, 2, 2, 3, 2, 7, 10, 47, 3, 1, 1, 2, 2, 3, 2, 6, 8, 21, 78, 4, 1, 1, 2, 2, 3, 2, 4, 5, 9, 22, 130, 2
Offset: 0

Views

Author

Alois P. Heinz, Jul 08 2012

Keywords

Examples

			A(3,0) = 2: [3], [1,1,1].
A(4,1) = 6: [4], [2,2], [2,1,1], [1,2,1], [1,1,2], [1,1,1,1].
A(5,2) = 5: [5], [3,1,1], [1,3,1], [1,1,3], [1,1,1,1,1].
A(6,3) = 7: [6], [4,1,1], [3,3], [2,2,2], [1,4,1], [1,1,4], [1,1,1,1,1,1].
Square array A(n,k) begins:
  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1, ...
  2,  2,  2,  2,  2,  2,  2,  2, ...
  2,  4,  2,  2,  2,  2,  2,  2, ...
  3,  6,  5,  3,  3,  3,  3,  3, ...
  2, 11,  5,  4,  2,  2,  2,  2, ...
  4, 17, 10,  7,  6,  4,  4,  4, ...
  2, 29, 10,  8,  5,  4,  2,  2, ...
		

Crossrefs

Column k=0 and main diagonal give: A000005.
Columns k=1, 2 give: A034297, A214253.

Programs

  • Maple
    b:= proc(n, i, k) option remember;
          `if`(n<1 or i<1, 0, `if`(n=i, 1, add(b(n-i, i+j, k), j={-k, 0, k})))
        end:
    A:= (n, k)-> `if`(n=0, 1, add(b(n, j, k), j=1..n)):
    seq(seq(A(n, d-n), n=0..d), d=0..15);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n < 1 || i < 1, 0, If[n == i, 1, Sum[b[n - i, i + j, k], {j, Union[{-k, 0, k}]}]]]; A[n_, k_] := If[n == 0, 1, Sum[b[n, j, k], {j, 1, n}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

A214257 Number A(n,k) of compositions of n where the difference between largest and smallest parts is <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 1, 1, 2, 4, 6, 2, 1, 1, 2, 4, 8, 11, 4, 1, 1, 2, 4, 8, 14, 15, 2, 1, 1, 2, 4, 8, 16, 27, 27, 4, 1, 1, 2, 4, 8, 16, 30, 47, 39, 3, 1, 1, 2, 4, 8, 16, 32, 59, 88, 63, 4, 1, 1, 2, 4, 8, 16, 32, 62, 111, 158, 100, 2
Offset: 0

Views

Author

Alois P. Heinz, Jul 08 2012

Keywords

Examples

			A(3,0) =  2: [3], [1,1,1].
A(4,1) =  6: [4], [2,2], [2,1,1], [1,2,1], [1,1,2], [1,1,1,1].
A(5,1) =  8: [5], [3,2], [2,3], [2,2,1], [2,1,2], [2,1,1,1], [1,2,2], [1,2,1,1], [1,1,2,1], [1,1,1,2], [1,1,1,1,1],
A(5,2) = 14: [5], [3,2], [3,1,1], [2,3], [2,2,1], [2,1,2], [2,1,1,1], [1,3,1], [1,2,2], [1,2,1,1], [1,1,3], [1,1,2,1], [1,1,1,2], [1,1,1,1,1].
Square array A(n,k) begins:
  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1, ...
  2,  2,  2,  2,  2,  2,  2,  2, ...
  2,  4,  4,  4,  4,  4,  4,  4, ...
  3,  6,  8,  8,  8,  8,  8,  8, ...
  2, 11, 14, 16, 16, 16, 16, 16, ...
  4, 15, 27, 30, 32, 32, 32, 32, ...
  2, 27, 47, 59, 62, 64, 64, 64, ...
		

Crossrefs

Columns k=0-1 give: A000005, A072951.
Main diagonal gives: A011782.

Programs

  • Maple
    b:= proc(n, k, s, t) option remember;
          `if`(n<0, 0, `if`(n=0, 1, add(b(n-j, k,
           min(s,j), max(t,j)), j=max(1, t-k+1)..s+k-1)))
        end:
    A:= (n, k)-> `if`(n=0, 1, add(b(n-j, k+1, j, j), j=1..n)):
    seq(seq(A(n, d-n), n=0..d), d=0..11);
    # second Maple program:
    b:= proc(n, s, t) option remember; `if`(n=0, x^(t-s),
          add(b(n-j, min(s, j), max(t, j)), j=1..n))
        end:
    T:= (n, k)-> coeff(b(n$2, 0), x, k):
    A:= proc(n, k) option remember; `if`(k<0, 0,
          `if`(k>n, A(n$2), A(n, k-1)+T(n, k)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..11);  # Alois P. Heinz, Jan 05 2019
  • Mathematica
    b[n_, k_, s_, t_] := b[n, k, s, t] = If[n < 0, 0, If[n == 0, 1, Sum [b[n - j, k, Min[s, j], Max[t, j]], {j, Max[1, t - k + 1], s + k - 1}]]]; A[n_, k_] := If[n == 0, 1, Sum[b[n - j, k + 1, j, j], {j, 1, n}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 11}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

Formula

T(n,k) = Sum_{i=0..k} A214258(n,i).

A214268 Number A(n,k) of compositions of n where the difference between largest and smallest parts is <= k and adjacent parts are unequal; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 3, 4, 5, 3, 1, 1, 1, 1, 3, 4, 7, 11, 5, 1, 1, 1, 1, 3, 4, 7, 12, 12, 3, 1, 1, 1, 1, 3, 4, 7, 14, 20, 16, 5, 1, 1, 1, 1, 3, 4, 7, 14, 21, 28, 30, 5, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 09 2012

Keywords

Examples

			A(3,0) = 1: [3].
A(4,1) = 2: [4], [1,2,1].
A(5,2) = 5: [5], [3,2], [2,3], [2,1,2], [1,3,1].
A(6,3) = 12: [6], [4,2], [3,2,1], [3,1,2], [2,4], [2,3,1], [2,1,3], [2,1,2,1], [1,4,1], [1,3,2], [1,2,3], [1,2,1,2].
A(7,4) = 21: [7], [5,2], [4,3], [4,2,1], [4,1,2], [3,4], [3,1,3], [3,1,2,1], [2,5], [2,4,1], [2,3,2], [2,1,4], [2,1,3,1], [1,5,1], [1,4,2], [1,3,2,1], [1,3,1,2], [1,2,4], [1,2,3,1], [1,2,1,3], [1,2,1,2,1].
Square array A(n,k) begins:
  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  3,  3,  3,  3,  3,  3,  3, ...
  1,  2,  4,  4,  4,  4,  4,  4, ...
  1,  4,  5,  7,  7,  7,  7,  7, ...
  1,  3, 11, 12, 14, 14, 14, 14, ...
  1,  5, 12, 20, 21, 23, 23, 23, ...
		

Crossrefs

Columns k=0, 1 give: A000012, 1+A214270(n).
Main diagonal gives: A003242.

Programs

  • Maple
    b:= proc(n, k, s, t, l) option remember;
          `if`(n<0, 0, `if`(n=0, 1, add(`if`(j=l, 0, b(n-j, k,
           min(s, j), max(t, j), j)), j=max(1, t-k+1)..s+k-1)))
        end:
    A:= (n, k)-> `if`(n=0, 1, add(b(n-j, k+1, j, j, j), j=1..n)):
    seq(seq(A(n,d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, k_, s_, t_, l_] := b[n, k, s, t, l] = If[n < 0, 0, If[n == 0, 1, Sum[If[j == l, 0, b[n - j, k, Min[s, j], Max[t, j], j]], {j, Max[1, t - k + 1], s + k - 1}]]]; A[n_, k_] := If[n == 0, 1, Sum[b[n - j, k + 1, j, j, j], {j, 1, n}]]; Table[Table[A [n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

A214254 Number of compositions of n where differences between neighboring parts are in {-2,2}.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 3, 2, 6, 4, 4, 3, 13, 6, 5, 6, 21, 10, 10, 9, 33, 18, 14, 15, 58, 30, 19, 27, 96, 51, 31, 44, 159, 89, 45, 77, 271, 152, 66, 133, 456, 263, 104, 228, 768, 458, 156, 395, 1310, 791, 236, 685, 2228, 1371, 363, 1187, 3802, 2380, 551, 2056, 6509
Offset: 0

Views

Author

Alois P. Heinz, Jul 08 2012

Keywords

Examples

			a(7) = 2: [7], [3,1,3].
a(8) = 6: [8], [5,3], [3,5], [3,1,3,1], [2,4,2], [1,3,1,3].
a(9) = 4: [9], [5,3,1], [1,3,5], [1,3,1,3,1].
		

Crossrefs

Column k=2 of A214247.

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n<1 or i<1, 0, `if`(n=i, 1, add(b(n-i, i+j), j=[-2, 2])))
        end:
    a:= n-> `if`(n=0, 1, add(b(n, j), j=1..n)):
    seq(a(n), n=0..80);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n < 1 || i < 1, 0, If[n == i, 1, Sum[b[n-i, i+j], { j, {-2, 2}}]]]; a[n_] := If[n == 0, 1, Sum[b[n, j], {j, 1, n}]]; Table [a[n], {n, 0, 80}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)

A241209 a(n) = E(n) - E(n+1), where E(n) are the Euler numbers A122045(n).

Original entry on oeis.org

1, 1, -1, -5, 5, 61, -61, -1385, 1385, 50521, -50521, -2702765, 2702765, 199360981, -199360981, -19391512145, 19391512145, 2404879675441, -2404879675441, -370371188237525, 370371188237525, 69348874393137901, -69348874393137901, -15514534163557086905
Offset: 0

Views

Author

Paul Curtz, Apr 17 2014

Keywords

Comments

A version of the Seidel triangle (1877) for the integer Euler numbers is
1
1 1
2 2 1
2 4 5 5
16 16 14 10 5
16 32 46 56 61 61
etc.
It is not in the OEIS. See A008282.
The first diagonal, Es(n) = 1, 1, 1, 5, 5, 61, 61, 1385, 1385, ..., comes from essentially A000364(n) repeated.
a(n) is Es(n) signed two by two.
Difference table of a(n):
1, 1, -1, -5, 5, 61, -61, -1385, ...
0, -2, -4, 10, 56, -122, -1324, ...
-2, -2, 14, 46, -178, -1202, ...
0, 16, 32, -224, -1024, ...
16, 16, -256, -800, ...
0, -272, -544, ...
-272, -272, ...
0, ...
etc.
Sum of the antidiagonals: 1, 1, -5, -11, 61, 211, -385, ... = A239322(n+1).
Main diagonal interleaved with the first upper diagonal: 1, 1, -2, -4, 14, 46, ... = signed A214267(n+1).
Inverse binomial transform (first column): A155585(n+1).
The Akiyama-Tanigawa transform applied to A046978(n+1)/A016116(n) gives
1, 1, 1/2, 0, -1/4, -1/4, -1/8, 0, ...
0, 1, 3/2, 1, 0, -3/4, -7/8, ...
-1, -1, 3/2, 4, 15/4, 3/4, ...
0, -5, -15/2, 1, 15, ...
5, 5, -51/2, -56, ...
0, 61, 183/2, ...
-61, -61, ...
0, ...
etc.
A122045(n) and A239005(n) are reciprocal sequences by their inverse binomial transform. In their respective difference table, two different signed versions of A214247(n) appear: 1) interleaved main diagonal and first under diagonal (1, -1, -1, 2, 4, -14, ...) and 2) interleaved main diagonal and first upper diagonal (1, 1, -1, -2, 4, 14, ...).

Crossrefs

Programs

  • Magma
    EulerPoly:= func< n,x | (&+[ (&+[ (-1)^j*Binomial(k,j)*(x+j)^n : j in [0..k]])/2^k: k in [0..n]]) >;
    Euler:= func< n | 2^n*EulerPoly(n, 1/2) >; // A122045
    [Euler(n) - Euler(n+1): n in [0..40]]; // G. C. Greubel, Jun 07 2023
    
  • Maple
    A241209 := proc(n) local v, k, h, m; m := `if`(n mod 2 = 0, n, n+1);
    h := k -> `if`(k mod 4 = 0, 0, (-1)^iquo(k,4));
    (-1)^n*add(2^iquo(-k,2)*h(k+1)*add((-1)^v*binomial(k,v)*(v+1)^m, v=0..k)
    ,k=0..m) end: seq(A241209(n),n=0..24); # Peter Luschny, Apr 17 2014
  • Mathematica
    skp[n_, x_]:= Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}];
    a[n_]:= skp[n, x] - skp[n+1, x]/. x->0; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Apr 17 2014, after Peter Luschny *)
    Table[EulerE[n] - EulerE[n+1], {n,0,30}] (* Vincenzo Librandi, Jan 24 2016 *)
    -Differences/@Partition[EulerE[Range[0,30]],2,1]//Flatten (* Harvey P. Dale, Apr 16 2019 *)
  • SageMath
    [euler_number(n) - euler_number(n+1) for n in range(41)] # G. C. Greubel, Jun 07 2023

Formula

a(n) = A119880(n+1) - A119880(n).
a(n) is the second column of the fractional array.
a(n) = (-1)^n*second column of the array in A239005(n).
a(n) = skp(n, 0) - skp(n+1, 0), where skp(n, x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 17 2014
E.g.f.: exp(x)/cosh(x)^2. - Sergei N. Gladkovskii, Jan 23 2016
G.f. T(0)/x-1/x, where T(k) = 1 - x*(k+1)/(x*(k+1)-(1-x)/(1-x*(k+1)/(x*(k+1)+(1-x)/T(k+1)))). - Sergei N. Gladkovskii, Jan 23 2016
Showing 1-10 of 13 results. Next