A060326 Numbers m such that 2*m - sigma(m) is a divisor of m and greater than one, where sigma = A000203 is the sum of divisors.
10, 44, 136, 152, 184, 752, 884, 2144, 2272, 2528, 8384, 12224, 17176, 18632, 18904, 32896, 33664, 34688, 49024, 63248, 85936, 106928, 116624, 117808, 526688, 527872, 531968, 556544, 589312, 599072, 654848, 709784, 801376, 879136, 885928, 1090912
Offset: 1
Keywords
Examples
m=10 is a term because the divisors of 10 are 1,2,5,10, with sum 18 and 2*m-18 = 2, which divides 10. Or sigma(10)/10 = 9/5 = (2*k-1)/k with k=5.
Links
- R. J. Mathar and Donovan Johnson, Table of n, a(n) for n = 1..200 (first 42 terms from R. J. Mathar)
Crossrefs
Cf. A214408.
Programs
-
Mathematica
sdnQ[n_]:=Module[{c=2n-DivisorSigma[1,n]},c>1&&Divisible[n,c]]; Select[ Range[600000],sdnQ] (* Harvey P. Dale, Jul 23 2012 *)
-
PARI
for(n=1,6e5,(t=2*n-sigma(n))>1 & !(n%t) & print1(n",")) \\ M. F. Hasler, Jul 21 2012
Formula
Extensions
More terms from Michel Marcus, Oct 07 2013
Comments